
ON KIM-INDEPENDENCE

ITAY KAPLAN AND NICHOLAS RAMSEY

Abstract. We study NSOP1 theories. We define Kim-independence, which

generalizes non-forking independence in simple theories and corresponds to

non-forking at a generic scale. We show that Kim-independence satisfies a
version of Kim’s lemma, symmetry, and an independence theorem and that,

moreover, these properties individually characterize NSOP1 theories. We de-

scribe Kim-independence in several concrete theories and observe that it cor-
responds to previously studied notions of independence in Frobenius fields and

vector spaces with a generic bilinear form.
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1. Introduction

The class of simple theories was one of the first classes of unstable theories to
receive extensive study. The starting point is Classification Theory [She90], where,
in the course of studying stable theories, Shelah isolates local character as a key
property of non-forking independence and observes a dichotomy in the way local
character can fail, a theorem we now recognize as saying that a non-simple theory
must have the tree property of the first or second kind. Shortly after the publica-
tion of the first edition of [She90], Shelah defined the class of simple theories and
characterized them in terms of a certain chain condition of the Boolean algebra of
non-weakly dividing formulas, which in turn led to consistency results on their satu-
ration spectra [She80]. The aim of that work was to obtain an ‘outside’ set-theoretic
definition of the class to support the claim that simplicity marked a dividing line.
In separate developments, questions concerning concrete examples created the need
for new methods to treat unstable structures. Hrushovski and Pillay used local sta-
bility and S1-rank in the study of the defininability of groups in pseudo-finite and
PAC fields in [HP94], and these methods were situated in the broader context of
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PAC structures studied by Hrushovski [Hru91], where an independence theorem
was proved. Moreover, Lachlan’s far-reaching theory of smoothly approximated
structures furnished examples of tame unstable theories. After Kantor, Liebeck,
and Macpherson [KLM89] classified the primitive smoothly approximable struc-
tures, Cherlin and Hrushovski [CH03] used stability theoretic methods concerning
independence and amalgamation to describe how these primitive pieces fit together
to form a quasi-finite structure.

Kim’s thesis and subsequent work by Kim and Pillay showed how to regard these
developments as instances of a common theory, with non-forking independence at its
center. Kim and Pillay proved that in a simple theory, forking and dividing coincide,
non-forking independence is symmetric and transitive, and that the independence
theorem holds over models. Moreover, Kim showed that symmetry and transitivity
of non-forking both individually characterize the simple theories, and Kim and
Pillay showed that any independence relation satisfying the basic properties of non-
forking independence must actually coincide with non-forking independence, giving
both a striking characterization of the simple theories and a powerful method for
showing that a particular theory is simple, namely by observing that it has an
independence relation of the right kind.

Here, we study the class of NSOP1 theories. These are the theories which do not
have the property SOP1, which form a class of theories that properly contain the
simple theories and which are contained inside the class of theories without the tree
property of the first kind. SOP1 was defined by Shelah and Dzamonja in their study
of the E∗-order [DS04] and later studied by Shelah and Usvyatsov in [SU08]. The
NSOP1 theories were characterized as the theories satisfying a weak independence
theorem for invariant types by Chernikov and the second-named author in [CR16].
This characterization provided a point of contact between the combinatorics of
model-theoretic tree properties and the study of definability in particular algebraic
examples. Chatzidakis [Cha99], [Cha02] studied independence in ω-free PAC fields
and, more generally, Frobenius fields and showed that the independence theorem
holds for these structures even though they are not simple. Similarly, Granger
showed in his thesis that the model companion of the theory of infinite-dimensional
vector spaces with a bilinear form is not simple but nonetheless comes equipped with
a good notion of independence. The amalgamation criterion of [CR16] established
that these structures have NSOP1 theory by appealing to the existence of these
independence relations, but what was missing was a theory of independence in
NSOP1 theories more generally. The purpose of this paper is to establish exactly
such a theory.

One central tool in the study of forking in simple theories is Kim’s lemma: a
formula divides over a set A if and only if it divides with respect to some Morley
sequence over A if and only if it divides for all Morley sequences over A. In [CK12],
this was shown to hold over models in NTP2 theories, provided that the Morley
sequence is a strict invariant Morley sequence. In the setting of NSOP1 theories, we
find a new phenomenon: forking which is never witnessed by a generic sequence.
In fact, we show that any NSOP1 theory with a universal witness to dividing must
be simple (Proposition 7.6 below) and that forking need not equal dividing in an
NSOP1 theory. Nonetheless, we find that, by restricting attention to the forking
that is witnessed by a generic sequence, one can recover many of the properties
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of forking in simple theories. We show moreover that this kind of simplicity at a
generic scale is characteristic of NSOP1 theories.

There is considerable freedom in the choice of notion of generic sequence. One
suggestion which inspired our work is due to Kim, who proposed in his 2009 talk on
NTP1 theories [Kim09] that one might develop an independence theory for NTP1

theories or a subclass therein by considering only formulas which divide with respect
to every non-forking Morley sequence. Compared to invariance or finite satisfia-
bility, forking is a relatively weak notion of independence and this notion proved
unwieldy at the beginning stages of developing the theory presented here. However,
Hrushovski’s study of q-dividing [Hru12] and Malliaris and Shelah’s characteriza-
tion of NTP1 theories in terms of higher formulas [MS15] provided evidence that
one might be able to build a theory around an investigation of formulas that di-
vide with respect to a Morley sequence in a global invariant or finitely satisfiable
type. Building off this work, we introduce the notion of Kim-dividing – a formula
Kim-divides over a set A if it divides with respect to a Morley sequence in a global
A-invariant type – and the associated notion of independence, Kim-independence.
Our first observation is that a theory is NSOP1 if and only if Kim-dividing satisfies
a version of Kim’s lemma over models, where a formula divides with respect to a
Morley sequence in some global invariant type extending the type of the parameters
if and only if it divides with respect to every Morley sequence in an appropriate
invariant type.

From Kim’s lemma for Kim-dividing, many familiar properties of non-forking
independence follow: Kim-forking equals Kim-dividing, Kim-independence satisfies
extension and a version of the chain condition, etc. In Section 4, we show addition-
ally that Kim-independence is symmetric over models. The argument there centers
upon the notion of a tree Morley sequence which is defined in terms of indiscernible
trees. We show that tree Morley sequences always witness Kim-dividing and prove
a version of the chain condition for them. In Section 5, we prove the independence
theorem. In Section 7, we state our main theorem: Kim’s lemma for Kim-dividing,
symmetry over models, and the independence theorem both hold in NSOP1 theo-
ries and individually characterize NSOP1 theories. We also show that the simple
theories can be characterized in several new ways in terms of Kim-independence. In
particular, we show that Kim-independence coincides with non-forking over mod-
els if and only if the theory is simple, which means that our theorems imply the
corresponding facts for non-forking independence in a simple theory. Finally, we
prove that in an NSOP1 theory a formula Kim-divides over a model if and only
if it divides with respect to every non-forking Morley sequence in the parameters
and this too characterizes NSOP1 theories. This means that Kim-independence
could have been defined from the outset in essentially the way Kim proposed, but
curiously, proving anything about this notion without making use of invariant types
seems quite difficult.

We conclude the paper with Section 8 where we describe Kim-independence
explicitly in several concrete examples. We show it may be described in purely
algebraic terms in the case of Frobenius fields, where Kim-independence turns out
to coincide with weak independence, as defined by Chatzidakis. We also show that in
Granger’s two-sorted theory of a vector space over an algebraically closed field with
a generic bilinear form, Kim-independence is the same as Granger’s Γ-independence
for singletons and may be given a clean algebraic description in general. These
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results suggest the naturality and robustness of Kim-dividing, but also serve to
explain the simplicity-like phenomena observed in these concrete examples on the
basis of a general theory. In this section, we additionally describe a combinatorial
example of a NSOP1 theory, based on a variant of T ∗feq introduced by Džamonja and
Shelah, which furnishes counter-examples to some a priori possible strengthenings
of the results we prove. In particular, we give the first example of a simple non-
cosimple type, answering a question of Chernikov [Che14].

2. Syntax

In this section we will define SOP1 and prove its equivalence with a syntactic
property of a different form. This will allow us to relate SOP1 to dividing. We
will often work with arrays and trees. Suppose (cij)i<κ,j<λ is an array. Write
ci = (ci,j)j<λ for the ith row of the array and c<i for the sequence of rows with
index less than i, i.e. (ck)k<i. Suppose T is a tree, (aη)η∈T is a collection of tuples
indexed by T . We write E for the tree partial order and <lex for the lexicographic
order on T . For a node η ∈ T , write aEη for the sequence 〈aν : ν E η〉 (consider it
as a sequence by ordering lexicographically), and likewise aCη for 〈aν : ν C η〉. We
use the notation aDη and aBη similarly. If the tree T is a contained in 2<κ or ω<κ,
we write 0α to denote the element of the tree of length α consisting of all zeros.
Throughout the paper, T denotes a complete theory and M |= T is a monster model
of T .

Definition 2.1. [DS04, Definition 2.2] The formula ϕ(x; y) has SOP1 if there is a
collection of tuples (aη)η∈2<ω so that

• For all η ∈ 2ω, {ϕ(x; aη|α) : α < ω} is consistent.
• For all η ∈ 2<ω, if ν D η _ 0, then {ϕ(x; aν), ϕ(x; aη_1)} is inconsistent.

We say T is SOP1 if some formula has SOP1 modulo T . T is NSOP1 otherwise.

The following lemma closely follows the proof of Lemma 5.2 in [CR16], but with
a strengthening which allows us to relax the 2-inconstency in the definition of SOP1

to a version with k-inconsistency.
{fancy}

Lemma 2.2. Suppose (ci,j)i<ω,j<2 is an array where ci,j = (dij , eij) for all i, j and
χ1(x; y) and χ2(x; z) are formulas over C. Write ψ(x; y, z) for χ1(x; y) ∧ χ2(x; z)
and suppose

(1) For all i < ω, ci,0 ≡Cc<i,0e<i,1 ci,1;
(2) {ψ(x; ci,0) : i < ω} is consistent;
(3) j ≤ i =⇒ {χ1(x; di,0), χ2(x; ej,1)} is inconsistent,

then T is SOP1.

Proof. By adding constants, we may assume C = ∅. For each n, define a subtree
Tn by

Tn = {η _ 0α : η ∈ 2≤n, α < ω} ∪ {η _ 0α _ 1 : η ∈ 2≤n, α < ω}.
Let P (Tn) ⊆ 2ω be the set of infinite paths of Tn. Concretely,

P (Tn) = {η _ 0ω : η ∈ 2≤n}
As a first step, we will build by induction an ascending sequence of tuples (lη, rη)η∈Tn ,
where lη = (dη, eη) and rη = (fη, gη) so that

(1) If η ∈ P (Tn), (lη|α, gη|α)α<ω ≡ (cα,0, eα,1)α<ω.
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(2) If η _ 1 ∈ Tn then rη_0 = lη_1.
(3) If η ∈ 2≤n then (lη_0, rη_0) ≡lEηgEη (lη_1, rη_1).

For the n = 0 case, define l0α = (d0α , e0α) = cα,0, r0α = (f0α , g0α) = cα,1
and l0α_1 = r0α_0 for all α < ω. For each α < ω, we can choose σα ∈
Aut(M/c<α,0e<α,1) such that σα(cα,0) = cα,1. Let r0α_1 = σα+1(cα+1,1) =
σα+1(r0α_0). This defines (lη, rη)η∈T0

satisfying (1)-(3).
Now by induction suppose (lη, rη)η∈Tn has been defined. Suppose η ∈ P (Tn+1)\

P (Tn). Then there is ν ∈ 2≤n so that η = ν _ 1 _ 0ω. Then ν _ 1 ∈ Tn and, by
induction,

(lν_0, rν_0) ≡lEνgEν (lν_1, rν_1)

and rν_0 = lν_1. Choose an automorphism σ ∈ Aut(M/lEνgEν) so that σ(lν_0) =
lν_1. Then put rν_1 = σ(rν_0). Then define (lν_1_0α , rν_1_0α) = σ(lν_0_0α , rν_0_0α)
for all α < ω. This completes the construction of (lη, rη)η∈Tn+1

. We obtain
(lη, rη)η∈2<ω as the union over all n of (lη, rη)η∈Tn .

Now we check that with respect to the parameters (lη)η∈2<ω , ψ witnesses SOP1.
Fix any path η ∈ 2ω, we have to check that {ψ(x; lη|α) : α < ω} is consistent. But
given any n, lE(η|n) ⊂ Tn and by (1), lE(η|n) ≡ (cα,0)α≤n hence {ψ(x; lη|α) : α ≤ n}
is consistent, as {ψ(x; cα,0) : α ≤ n} is consistent, by hypothesis. Then {ψ(x; lη|α) :
α < ω} is consistent by compactness.

Now fix η ⊥ ν ∈ 2<ω so that (η ∧ ν) _ 0 E η and (η ∧ ν) _ 1 = ν. We
must check {ψ(x; lη), ψ(x; lν)} is inconsistent. By definition of ψ, it is enough to
show {χ1(x; dη), χ2(x; eν)} is inconsistent. As ν = (η ∧ ν) _ 1, we know that
lν = l(η∧ν)_1 = r(η∧ν)_0 by (2). Let ξ = (η ∧ ν) _ 0. Then ξ E η and eν = gξ so
it suffices to show {χ1(x; eη), χ2(x; gξ)} is inconsistent. Let n = l(η) and m = l(ξ).
Then m ≤ n and by (1), we have (lη, gξ) ≡C (cn,0, cm,1). By hypothesis, this implies
{χ1(x; dη), χ2(x; gξ)} is inconsistent, so we finish. �

{karyversion}
Lemma 2.3. Suppose ϕ(x; y) is a formula, k is a natural number, and (ci)i∈I is
an infinite indiscernible sequence with ci = (ci,0, ci,1) satisfying:

(1) For all i ∈ I, ci,0 ≡c<i ci,1
(2) {ϕ(x; ci,0) : i ∈ I} is consistent
(3) {ϕ(x; ci,1) : i ∈ I} is k-inconsistent,

then T has SOP1.

Proof. By compactness, it suffices to prove this when I = Q – so suppose (ci,0, ci,1)i∈Q
is an indiscernible sequence with ci,0 ≡c<i ci,1, {ϕ(x; ci,0) : i ∈ Q} is consistent,
and {ϕ(x; ci,1) : i ∈ Q} is k-inconsistent.

For integers l < l′, define a partial type Γl,l′(x) by

{ϕ(x; ci,0) : i ∈ (l+m, l+m+1),m ∈ ω,m < l′−l}∪{ϕ(x; cl+m,1) : m < l′−l,m ∈ ω}.

Let Γl,l(x) = ∅. Let n be maximal so that Γ0,n(x) is consistent. Note that if Γl,l′(x)
is consistent then Γl+z,l′+z(x) is consistent for any integer z by indiscernibility of
the sequence (ci)i∈Q. Let n ∈ ω be maximal so that Γ0,n(x) is consistent. Note
that Γ0,0(x) is consistent, as it is the empty partial type and we have

Γ0,k(x) ` {ϕ(x; ci,1) : i ∈ ω, i < k},

which is inconsistent, so 0 ≤ n < k. So now we know Γ−n,0(x) is consistent and
Γ−n,1(x) = Γ−n,0(x)∪Γ0,1(x) is inconsistent. By indiscernibility and compactness,
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we may fix some integer N > 0 so that

Γ−n,0(x) ∪ {ϕ(x; c0,1)} ∪ {ϕ(x; c j+1
N ,0) : j ∈ ω, j < N − 1}

is inconsistent. Now choose ∆(x) ⊆ Γ−n,0(x) finite so that

∆(x) ∪ {ϕ(x; c0,1)} ∪ {ϕ(x; c j+1
N ,0) : j ∈ ω, j < N − 1}

is inconsistent. Let z indicate the tuple of variables (y0, . . . , yN−2) and let χ(x; z)
be the formula χ(x; z) =

∧
i<N ϕ(x; yi) ∧

∧
∆(x). Let (ai,j)i<ω,j<2 be defined as

follows:
ai,0 = (ci,0; di,0) = (ci,0; ci+ 1

N ,0
, . . . , ci+N−1

N ,0).

Now choose di,1 so that ci,0di,0 ≡c<i ci,1di,1 – this is possible as ci,0 ≡c<i ci,1. Then
we put ai,1 = (ci,1, di,1). Let ψ(x; yz) = ϕ(x; y) ∧ χ(x; z).

To conclude, we have to establish the following:
Claim: The array (ai,j)i<ω,j<2 and the formulas ϕ(x; y), χ(x; z) satisfy

(1) ai,0 ≡a<i,0,c<i,1 ai,1
(2) {ψ(x; ai,0) : i < ω} is consistent
(3) If l ≤ l′ then {ϕ(x; cl,1), χ(x; dl′,0)} is inconsistent.

Proof of claim: (1) follows from the fact that ai,0 ≡c<i ai,1 and both a<i,0 and c<i,1
are enumerated in c<i. Note that Γ−n,0(x) is consistent so, by indiscernibility,

Γ−n,0(x) ∪ {ϕ(x; ci,0) : i ∈ [0,∞) ∩Q}
is consistent, which establishes (2). Finally, if l ≤ l′, then {ϕ(x; cl,1), χ(x; dl′,0)}
implies

{ϕ(x; cl,1)} ∪ {ϕ(x; cl′+ j+1
N

) : j ∈ ω, j < N − 1} ∪∆(x).

By indiscernibility of (ci)i∈Q and the fact that l ≤ l′, this set is consistent if and
only if

{ϕ(x; c0,1)} ∪ {ϕ(x; c j+1
N ,0) : j ∈ ω, j < N − 1} ∪∆(x)

is consistent. As this latter set is inconsistent, this shows (3), which proves the
claim. The lemma now follows by Lemma 2.2. �

Finally, we note that the criterion for SOP1 from Lemma 2.3 is an equivalence.
This was implicit in [CR16], at least in its 2-inconsistent version, but we think that
the property described by Lemma 2.3 is, in most cases, the more fruitful way of
thinking about SOP1 and therefore worth making explicit.

{arrayequivalent}
Proposition 2.4. The following are equivalent:

(1) ϕ has SOP1

(2) There is an array (ci,j)i<ω,j<2 so that
(a) ci,0 ≡c<i ci,1 for all i < ω
(b) ϕ(x; ci,0) : i < ω} is consistent
(c) {ϕ(x; ci,1) : i < ω} is 2-inconsistent.

(3) There is an array (ci,j)i<ω,j<2 so that
(a) ci,0 ≡c<i ci,1 for all i < ω
(b) ϕ(x; ci,0) : i < ω} is consistent
(c) {ϕ(x; ci,1) : i < ω} is k-inconsistent for some k.

Proof. (3) =⇒ (1) is Lemma 2.3.
(1) =⇒ (2). This follows from the proof of the proof of [CR16, Proposition 5.6]
(2) =⇒ (3) is obvious. �



ON KIM-INDEPENDENCE 7

3. Kim-dividing

3.1. Averages and Invariant Types.

Definition 3.1. A global type q ∈ S(M) is called A-invariant if b ≡A b′ implies
ϕ(x; b) ∈ q if and only if ϕ(x; b′) ∈ q. A global type q is invariant if there is some
small set A such that q is A-invariant. If q(x) and r(y) are A-invariant global types,
then the type (q ⊗ r)(x, y) is defined to be tp(a, b/M) for any b |= r and a |= q|Mb.
We define q⊗n by induction: q⊗1 = q and q⊗n+1 = q⊗n ⊗ q.

Fact 3.2. [Sim15, Chapter 2] Given a global A-invariant type q and positive integer {tensor}
n, q⊗n is a well-defined A-invariant global type. If N ⊃ A is an |A|+-saturated
model and p ∈ S(N) satisfies ϕ(x; b) ∈ p ⇐⇒ ϕ(x; b′) ∈ p whenever b, b′ ∈ N and
b ≡A b′, then p extends uniquely to a global A-invariant type.

Definition 3.3. Suppose q is an A-invariant global type and I is a linearly ordered
set. By a Morley sequence in q over A of order type I, we mean a sequence (bα)α∈I
such that for each α ∈ I, bα |= q|Ab<α where b<α = (bβ)β<α. Given a linear order

I, we will write q⊗I = q⊗I(xα : α ∈ I) for the A-invariant global type so that if
b |= q⊗I then bα |= q|Mb<α for all α ∈ I.

The above definition of q⊗I generalizes the finite tensor product q⊗n – given any
global A-invariant type q and linearly ordered set I, one may easily show that q⊗I

exists and is A-invariant, by Fact 3.2 and compactness.

Definition 3.4. Let I ⊆ Mn be a sequence of tuples, A ⊆ M a set, and D an
ultrafilter over I. We define the average type of D over A to be the type defined
by

Av(D, A) = {ϕ(x; a) : a ∈ A and {b ∈ I : M |= ϕ(b; a)} ∈ D}.

Fact 3.5. [She90, Lemma 4.1] Let I ⊆ Mn be a collection of tuples and D an {average}
ultrafilter on I.

(1) For every set C, Av(D, C) is a complete type over C.
(2) The global type Av(D,M) is I-invariant.
(3) For any model M |= T , if p ∈ Sn(M), there is some ultrafilter E on Mn so

that p = Av(E ,M).

One important consequence Fact 3.5 for us is that every type over a model M
extends to a global M -invariant type: given p ∈ S(M), one chooses an ultrafilter
D so that Av(D,M) = p. Then Av(D,M) is a global type extending p which is
M -invariant. In the arguments below, it will often be convenient to produce global
invariant types through a particular choice of ultrafilter.

Definition 3.6. Suppose M |= T and a = (ai)i<ω is an M -indiscernible sequence.
A global M -invariant type q ⊇ tp(a/M) is called an indiscernible type if whenenver
a′ |= q, a′ is M-indiscernible.

The following two lemma are essentially [Adl14, Lemma 8]. We include a proof
for completeness.

Lemma 3.7. If a = (ai)i<ω is an M -indiscernible sequence, there is an indis-
cernible global M -invariant type q ⊇ tp(a/M).
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Proof. Let N be an |M |+-saturated elementary extension of M of size κ and let
λ = iω((2κ)+). By compactness, we may stretch the given indiscernible sequence to
a′ = (a′i)i<λ. Let r ⊇ tp(a′/M) be an arbitrary global M -invariant type extending

tp(a′/M). Let d = (di)i<λ |= r|N . Use Erdős-Rado to extract from d an N -
indiscernible sequence (bi)i<ω. Clearly tp(b/N) extends tp(a/M). It is also M -
invariant: if not, there are n ≡M n′ in N , an increasing k-tuple i from ω, and a
formula ϕ so that

|= ϕ(bi;n)↔ ¬ϕ(bi, n
′).

Then there is an increasing k-tuple j so that

|= ϕ(dj ;n)↔ ¬ϕ(dj ;n
′),

since the sequence b is based on d. This contradicts the fact that d realizes an
M -invariant type over N . By Fact 3.2, the type tp(d/N) determines a unique
M -invariant extension to M. Call it q. Then q is an indiscernible type. �

{pathtype}
Lemma 3.8. Suppose M |= T , a = (ai)i<ω is an M -indiscernible sequence, and
q ⊇ tp(a/M) is a global M -invariant indiscernible type. Let (ai)i<ω |= q⊗ω|M with
a0 = a, where ai = (ai,j)j<ω. Then (ai)i<ω is a mutually indiscernible array over
M .

Proof. We prove by induction on n that (ai)i≤n is mututally indiscernible over
M . For n = 1, there’s nothing to prove. Suppose it’s been shown for n and
consider (ai)i≤n+1. As q is an indiscernible type, an+1 is Ma≤n-indiscernible. For
i ≤ n, we know, by induction, that ai is Ma<iai+1 . . . an-indiscernible. As an+1 |=
q|Ma≤n , this entails ai is indiscernible over Ma<iai+1 . . . an+1, which completes the
induction. �

3.2. Kim-dividing. In this subsection, we define Kim-dividing and Kim-forking,
the fundamental notions explored in this paper. To start, we will need the definition
of q-dividing, introduced by Hrushovski in [Hru12, Section 2.1]:

Definition 3.9. Suppose q(y) is an A-invariant global type. The formula ϕ(x; y)
q-divides over A if for some (equivalently, any) Morley sequence 〈bi : i < ω〉 in q
over A, {ϕ(x; bi) : i < ω} is inconsistent.

We note that we will consistently use the letters p, q, r to refer to types, n,m, k, l
to refer to numbers. In this way, no confusion between q-dividing and the more
familiar k-dividing will arise.

The related notion of a higher formula was introduced by Malliaris and Shelah
in [MS15] on the way to a new characterization of NTP1 theories:

Definition 3.10. [MS15, Definition 8.6] A higher formula is a triple (ϕ,A,D)
where ϕ = ϕ(x; y) is a formula, A is a set of parameters, and D is an ultrafilter on
Al(y) so that, if q = Av(D,M) and 〈bi : i < ω〉 |= q⊗ω|A then {ϕ(x; bi) : i < ω} is
consistent.

We can rephrase the above definition as: (ϕ,A,D) is a higher formula if, setting
q = Av(D,M), ϕ(x; y) does not q-divide over A.

Definition 3.11. We say that a formula ϕ(x; b) Kim-divides over A if there is
some A-invariant global type q ⊇ tp(b/A) so that ϕ(x; y) q-divides. The formula
ϕ(x; b) Kim-forks over A if ϕ(x; b) `

∨
i<k ψi(x; ci) and each ψi(x; ci) Kim-divides
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over A. A type Kim-forks if it implies a formula which does. If tp(a/Ab) does not

Kim-fork over A, we write a |̂ K
A
b.

We call this notion Kim-dividing to make explicit the fact that this definition was
inspired by a suggestion of Kim in his 2009 BIRS talk [Kim09], where he proposed
an independence relation based on instances of dividing that are witnessed by every
appropriate Morley sequence. A rough connection between Kim’s notion and ours is
provided by Theorem 3.14 below, which shows that, in an NSOP1 theory, dividing
with respect some invariant Morley sequence is equivalent to dividing with respect
to all. An even tighter connection is established by Theorem 6.6, which shows
that we can drop the assumption that the Morley sequences are generated by an
invariant type. (We note that for technical reasons our notion is still different from
Kim’s – the proposal of [Kim09] forces a kind of base monotonicity and we do not).

In general, we only know that a type over A has a global A-invariant extension
when A is a model. Thus, when working with Kim-independence below, we will
restrict ourselves almost entirely to the case where the base is a model.

The next two propositions explain how the notions of higher formula and q-
dividing interact with SOP1.

{higher}
Proposition 3.12. Suppose T has SOP1. Then there is a model M |= T , a formula
ϕ(x; b), and ultrafilters D0,D1 on M with

Av(D0,M) = Av(D1,M) = tp(b/M),

so that (ϕ,M,D0) is higher but (ϕ,M,D1) is not higher.

Proof. Fix a Skolemization T Sk of M . As T has SOP1, there is, by Proposition 2.4,
a formula ϕ(x; y) and an array (ci,j)i<ω+1,j<2 such that

(1) (ci)i<ω+1 is an indiscernible sequence (with respect to the Skolemized lan-
guage)

(2) cω,0 ≡L
Sk

c<ω
cω,1.

(3) {ϕ(x; ci,0) : i < ω + 1} is consistent.
(4) If i < j, then {ϕ(x; ci,1), ϕ(x; cj,0)} is inconsistent.

Put M = Sk(c<ω). For j = 0, 1, let Dj be any non-principal ultrafilter on M ,
concentrating on 〈ci,j : i < ω〉 and set qj = AvL(Dj ,M) for j = 0, 1. Note
that q0|M = tpL(cω,0/M) = tpL(cω,1/M) = q1|M by (2). By (3), ϕ(x; y) does
not q0-divide, hence (ϕ,M,D0) is higher. However, by (4) and indiscernibility,
{ϕ(x; c1,j) : j < ω} is 2-inconsistent hence ϕ(x; y) q1-divides, so (ϕ,M,D1) is not
higher. �

{qdiv}
Proposition 3.13. Suppose A is a set of parameters and ϕ(x; b) is a formula
which q-divides over A for some global A-invariant type q ⊇ tp(b/A). If there is
some global A-invariant r ⊇ tp(b/A) such that ϕ(x; y) does not r-divide, then T has
SOP1.

Proof. As ϕ(x; y) q-divides over A, there is k so that instances of ϕ(x; y) instantiated
on a Morley sequence of q are k-inconsistent.

Let (ci,1, ci,0)i∈Z |= (q ⊗ r)⊗Z|M . We have to check that the sequence satisfies
the following properties:

(1) {ϕ(x; ci,0) : i ∈ Z} is consistent
(2) {ϕ(x; ci,1) : i ∈ Z} is k-inconsistent
(3) ci,0 ≡c>i ci,1 for all i ∈ Z.
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Note that (ci,0)i∈Z |= r⊗Z|M so (1) follows from our assumption that ϕ(x; y) does
not r-divide. Likewise, (ci,1)i∈Z |= q⊗Z|M so (2) follows from the fact that ϕ(x, y)
q-divides. Finally, for any i ∈ Z, we have c>i realizes a global M -invariant type
over Mci,0ci,1. Hence (3) follows from the fact that ci,0 ≡M ci,1. �

{kimslemmaforindk}
Theorem 3.14. The following are equivalent for the complete theory T :

(1) T is NSOP1

(2) Ultrafilter independence of higher formulas: for every model M |= T , and
ultrafilters D and E on M with Av(D,M) = Av(E ,M), (ϕ,M,D) is higher
if and only if (ϕ,M, E) is higher

(3) Kim’s lemma for Kim-dividing: For every model M |= T and ϕ(x; b), if
ϕ(x; y) q-divides for some global M -invariant q ⊇ tp(b/M), then ϕ(x; y)
q-divides for every global M -invariant q ⊇ tp(b/M).

Proof. (1) =⇒ (3) is the contrapositive of Proposition 3.13.
(2) =⇒ (1) is the contrapositive of Proposition 3.12.
(3) =⇒ (2): Immediate, since every type finitely satisfiable in M is M -invariant.

�

Remark 3.15. Note that the proof gives a bit more: if T is NSOP1, (2) is true over
arbitrary sets and (3) is true over an arbitrary set A provided tp(b/A) extends to
a global A-invariant type.

3.3. The basic properties of Kim-independence. Theorem 3.14, a kind of
Kim’s lemma for Kim-dividing, already gives a powerful tool for proving that in
NSOP1 theories Kim-independence enjoys many of the properties known to hold
for non-forking independence in simple theories.

We will frequently use the following easy observation. The proof is exactly as in
the case of dividing. See, e.g., [GIL02, Lemma 1.5] or [She80, Lemma 1.4].

{basiccharacterization}
Lemma 3.16. (Basic Characterization of Kim-dividing) Suppose T is an arbitrary
complete theory. The following are equivalent:

(1) tp(a/Ab) does not Kim-divide over A.
(2) For any global A-invariant q ⊇ tp(b/A) and I = 〈bi : i < ω〉 |= q⊗ω|A with

b0 = b, there is a′ ≡Ab a such that I is Aa′-indiscernible.
(3) For any global A-invariant q ⊇ tp(b/A) and I = 〈bi : i < ω〉 |= q⊗ω|A with

b0 = b, there is I ′ ≡Ab I such that I ′ is Aa-indiscernible.

Note that in an NSOP1 theory, by Kim’s Lemma for Kim-dividing, we could
have replaced (2) by: there is a global A-invariant q ⊇ tp(b/A) and I = 〈bi : i <
ω〉 |= q⊗ω|A with b0 = b, so that for some a′ ≡Ab a such that I is Aa′-indiscernible
(and similarly for (3)).

The following proposition is proved by the same argument one uses to prove
forking = dividing via Kim’s lemma, as in [GIL02, Theorem 2.5] or [CK12, Corollary
3.16]

{kforkingequalskdividing}
Proposition 3.17. (Kim-forking = Kim-dividng) Suppose T is NSOP1. If M |= T ,
if ϕ(x; b) Kim-forks over M then ϕ(x; b) Kim-divides over M .

Proof. Suppose ϕ(x; b) `
∨
j<k ψj(x; cj) where each ψi(x; ci) K-divides over M . Fix

an ultrafilter D on M so that (b, c0, . . . , ck−1) |= Av(D,M). Let (bi, c
0
i , . . . , c

k−1
i )i<ω
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be a Morley sequence in Av(D,M). Then (bi)i<ω is an M -invariant Morley se-
quence. We must show {ϕ(x; bi) : i < ω} is inconsistent. Suppose not – let

a |= {ϕ(x; bi) : i < ω}. We have ϕ(x; bi) `
∨
j<k ψj(x; cji ) so for each i < ω, there

is j(i) < k so that |= ψj(i)(a; c
j(i)
i ). By the pigeonhole principle, there is j∗ < k

so that X = {i < ω : j(i) = j∗} is infinite. Then (cj∗i )i∈X is an M -invariant
Morley sequence in tp(cj∗/M). As T is NSOP1, Kim-dividing over M is witnessed

by any M -invariant Morley sequence so {ψj∗(x; cj∗i ) : i ∈ X} is inconsistent. But

a |= {ψj∗(x; cj∗i ) : i ∈ X}, a contradiction. �
{extension}

Proposition 3.18. (Extension over Models) Suppose M is a model, and a |̂ K
M
b.

Then for any c, there is a′ ≡Mb a so that a′ |̂ K
M
bc.

Proof. This is the usual proof, using Proposition 3.17. Let p(x; b) = tp(a/Mb). We
claim that the following set of formulas is consistent:

p(x; b) ∪ {¬ψ(x; b, c) : ψ(x; b, c) ∈ L(Mbc) and ψ(x; b, c) Kim-divides over M}.

If this set of formulas is not consistent, then by compactness,

p(x; b) `
∨
i<k

ψi(x; b, ci),

where each ψi(x; b, ci) Kim-divides over M . It follows that tp(a/Mb) Kim-forks
over M , so it Kim-divides over M by Proposition 3.17, a contradiction. So this set

is consistent and we may choose a realization a′. Then a′ |̂ K
M
bc and a′ ≡Mb a. �

{chaincondition}
Proposition 3.19. (Chain Condition for Invariant Morley Sequences) Suppose T

is NSOP1 and M |= T . If a |̂ K
M
b and q ⊇ tp(b/M) is a global M -invariant type,

then for any I = 〈bi : i < ω〉 |= q⊗ω|M with b = b0, there is a′ ≡Mb a so that
a′ |̂

M
I and I is Ma′-indiscernible.

Proof. By the basic characterization of Kim-dividing, Lemma 3.16, given a |̂ K
M
b,

q ⊇ tp(b/M) a global M -invariant type, and I = 〈bi : i < ω〉 |= q⊗ω|M with
b = b0, there is a′ ≡Mb a so that I is Ma′-indiscernible. To prove the proposition

it suffices to show a′ |̂ K
M
b<n for all n. Given n < ω, let r(x; y0, . . . , yn−1) =

tp(a′; b0, . . . , bn−1/M). Then 〈(bkn+n−1, bkn+n−2, . . . , bkn) : k < ω〉 |= (q⊗n)⊗ω|M
and, by indiscernibility,

a′ |=
⋃
k<ω

r(x; bkn+n−1, bkn+n−2, . . . , bkn).

As T is NSOP1, this shows a′ |̂ K
M
b<n. �

The next section will be dedicated to the proof that |̂ K is symmetric in NSOP1

theories. The argument will require more tools, but at this stage we can already

observe the converse: even a weak form of symmetry for |̂ K will imply that a
theory is NSOP1.

{weaksymmetrylemma}
Proposition 3.20. The following are equivalent:

(1) T is NSOP1

(2) Weak symmetry: if M |= T , then b |̂ i
M
a =⇒ a |̂ K

M
b.
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Proof. (1) =⇒ (2). As b |̂ i
M
a, there is a global M -invariant type r ⊇ tp(b/Ma).

We can find a Morley sequence I = 〈bi : i < ω〉 in q|Ma with b0 = b. Then I is
Ma-indiscernible, so no formula in tp(a/Mb) divides with respect to the sequence

I. But by Kim’s lemma for Kim-dividing, this implies a |̂ K
M
b.

(2) =⇒ (1). Suppose a 6 |̂ K
M
b. We argued in the previous direction that b |̂ i

M
a

entails the existence of a Morley sequence which does not witness that tp(a/Mb)
Kim-divides over M . This is a failure of Kim’s lemma for Kim dividing, so T has
SOP1 by Theorem 3.14. �

4. Symmetry{symmetrysection}
4.1. Generalized indiscernibles and a class of trees. For an ordinal α, the
language Ls,α be 〈E,∧, <lex, (Pβ)β<α〉. We may view a tree with α levels and
Ls,α-structures by interpreting E as the tree partial order, ∧ as the binary meet
function, <lex as the lexicographic order, and Pβ interpreted to define level β. For
the rest of the paper, a tree will be understood to be an Ls,α-structure for some
appropriate α. We will sometimes suppress the α and refer instead to Ls, where
the number of predicates is understood from context. We define a class of trees Tα
as follows.

Definition 4.1. Suppose α is an ordinal. We define Tα to be the set of functions
f so that

• dom(f) is an end-segment of α, possibly empty unless α is a limit.
• ran(f) ⊆ ω.
• finite support: the set {γ ∈ dom(f) : f(γ) 6= 0} is finite.

We interpret Tα as an Ls,α-structure by defining

• f E g if and only if f ⊆ g. Write f ⊥ g if ¬(f E g) and ¬(g E f).
• f ∧ g = f |[β,α) = g|[β,α) where β = min{γ : f |[γ,α) = g|[γ,α)}, if non-empty

(note that β will not be a limit, by finite support). Define f ∧ g to be the
empty function if this set is empty (note that this cannot occur if α is a
limit).

• f <lex g if and only if f C g or, f ⊥ g with dom(f ∧ g) = [γ + 1, α) and
f(γ) < g(γ)

• For all β < α, Pβ = {f ∈ Tα : dom(f) = [β, α)}. Pα is only defined on Tα
if α is a successor, in which case it only contains the empty function.

It is easy to check that for all n < ω, Tn ∼= ω<n. For α infinite, however, Tα will
be ill-founded. In particular, P0 names the level at the top of the tree, Pβ+1 names
the level immediately below Pβ , and so on.

As many arguments in this paper will involve inductive constructions of trees of
tuples indexed by Tα, it will be useful to fix notation as follows:

Definition 4.2. Suppose α is an ordinal.

(1) If w ⊆ α, the restriction of Tα to the set of levels w is given by

Tα � w = {η ∈ Tα : min(dom(η)) ∈ w and β ∈ dom(η) \ w =⇒ η(β) = 0}.
(2) If η ∈ Tα, dom(η) = [β + 1, α), and i < ω, let η _ 〈i〉 denote the function

η ∪ {(β, i)}.
(3) If α < β, we define the map ιαβ : Tα → Tβ by ιαβ(f) = f ∪ {(γ, 0) : γ ∈

β \ α}.
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(4) If β < α, then ζβ ∈ Tα denotes the function with dom(ζβ) = [β, α) and
ζβ(γ) = 0 for all γ ∈ [β, α).

The function iαβ includes Tα into Tβ by adding zeros to the bottom of every
node in Tα. Clearly if α < β < γ, then ιαγ = ιβγ ◦ ιαβ . If β is a limit, then Tβ is
the direct limit of the Tα for α < β along these maps. Visually, to get Tα+1 from
Tα, one takes countably many copies of Tα and adds a single root at the bottom.

Definition 4.3. Suppose I is an L′-structure, where L′ is some language.

(1) We say (ai : i ∈ I) is a set of I-indexed indiscernibles if whenever (s0, . . . , sn−1),
(t0, . . . , tn−1) are tuples from I with

qftpL′(s0, . . . , sn−1) = qftpL′(t0, . . . , tn−1),

then we have

tp(as0 , . . . , asn−1) = tp(at0 , . . . , atn−1).

(2) In the case that L′ = Ls,α for some α, we say that an I-indexed indiscernible
is s-indiscernible. As the only Ls,α-structures we will consider will be trees,
we will often refer I-indexed indiscernibles in this case as s-indiscernible
trees.

(3) We say that I-indexed indiscernibles have the modeling property if, given
any (ai : i ∈ I) from M, there is an I-indexed indiscernible (bi : i ∈ I) in M
locally based on (ai : i ∈ I) – i.e., given any finite set of formulas ∆ from L
and a finite tuple (t0, . . . , tn−1) from I, there is a tuple (s0, . . . , sn−1) from
I so that

qftpL′(t0, . . . , tn−1) = qftpL′(s0, . . . , sn−1)

and also

tp∆(bt0 , . . . , btn−1
) = tp∆(as0 , . . . , asn−1

).

Fact 4.4. [KKS14, Theorem 4.3] Let denote Is be the Ls,ω-structure (ω<ω,E, <lex {modeling}
,∧, (Pα)α<ω) with all symbols being given their intended interpretations and each
Pα naming the elements of the tree at level α. Then Is-indexed indiscernibles have
the modeling property.

Remark 4.5. Note that the tree ω<ω is not the same tree as Tω, which is ill-founded.

Corollary 4.6. For any α, Tα-indexed indiscernibles have the modeling property.

Proof. By Fact 4.4 and compactness. �

Definition 4.7. Suppose (aη)η∈Tα is a tree of tuples, and C is a set of parameters.

(1) We say (aη)η∈Tα is spread out over C if for all η ∈ Tα with dom(η) = [β +
1, α) for some β < α, there is a global C-invariant type qη ⊇ tp(aDη_0/C)
so that (aDη_〈i〉)i<ω is a Morley sequence over C in qη.

(2) Suppose (aη)η∈Tα is a tree which is spread out and s-indiscernible over C
and for all w, v ∈ [α]<ω with |w| = |v|,

(aη)η∈Tα�w ≡C (aη)η∈Tα�v

then we say (aη)η∈Tα is a Morley tree over C.
(3) A tree Morley sequence over C is a C-indiscernible sequence of the form

(aζβ )β<α for some Morley tree (aη)η∈Tα over C.
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Remark 4.8. If (aη)η∈Tα is s-indiscernible over C, then, in order to be spread out
over C, it suffices to have global C-invariant types as in (1) for all η identically
zero - i.e. those nodes in the tree of the form ζβ for some β < α. Note that the
condition in (2) forces (aζβ )β<α to be C-indiscernible. Finally, in (3) we speak of
(aζβ )β<α, the sequence indexed by the all-zeroes path in the tree, simply because
this is a convenient choice of a path. In an s-indiscernible tree over C, any two
paths will have the same type over C. Hence, (3) may be stated more succinctly
as: a tree Morley sequence over C is a path in some Morley tree over C.

{concatenation}
Lemma 4.9. Suppose (ai)i<ω is a tree Morley sequence over C.

(1) If ai = (bi, ci) for all i < ω, where the bi’s are all initial subtuples of ai of
the same length, then (bi)i<ω is a tree Morley sequence over C.

(2) Given 1 ≤ n < ω, suppose di = (an·i, an·i+1, . . . , an·i+n−1). Then (di)i<ω
is a tree Morley sequence over C.

Proof. (1) is immediate from the definition: s-indiscernibility, spread-outness, and
being a Morley tree over C are all preserved under taking subtuples.

(2) Suppose (aη)η∈Tω is a Morley tree over C with aζi = ai. Define a function
j : Tω → Tω so that if η ∈ Tω with dom(η) = [k, ω), then dom(j(η)) = [n(k+ 1), ω)
and

j(η)(l) =

{
η
(
l
n − 1

)
if n|l

0 otherwise

for all l ∈ [n(k + 1), ω). Define (bη)η∈Tω by

bη = (aj(η), aj(η)_0, . . . , aj(η)_0n−1).

It is easy to check that this is also an s-indiscernible tree over M (more formally, this
construction corresponds to the n-fold elongation of the tree (aη)η∈Tω as defined in
[CR16] so (bη)η∈Tω is s-indiscernible over M by [CR16, Proposition 2.1(1)] there).
It is also easy to check that (bη)η∈Tω is spread out over M . Finally, the tree (bη)η∈Tω
is also a Morley tree over M : given w ∈ [ω]<ω, let w′ = {n(k+1)− l : k ∈ w, l < n}.
Then if w, v ∈ [ω]<ω and |w| = |v|, then |w′| = |v′| so (aη)η∈Tω�w′ ≡C (aη)η∈Tω�v′

so (bη)η∈Tω�w ≡C (bη)η∈Tω�v. It follows that (bζi)i<ω is a tree Morley sequence over
C. As we have

bζi = (aζn(i+1)
, aζn(i+1)_0, . . . , aζn(i+1)_0n−1 ) = (an(i+1), an(i+1)+1, . . . , an(i+1)+n+1),

we deduce that (di)i<ω is a tree Morley sequence over M . �

From the existence of a sufficiently large tree which is spread out and s-indiscernible
over M , one can obtain a Morley tree which is based on it. The proof is via a stan-
dard Erdős-Rado argument. We follow the argument of [GIL02, Theorem 1.13].

{morleyextraction}
Lemma 4.10. Suppose (aη)η∈Tκ is a tree of tuples, spread out and s-indiscernible
over M . If κ is sufficiently large, then there is a Morley tree (bη)η∈Tω so that for
all w ∈ [ω]<ω, there is v ∈ [κ]<ω so that

(aη)η∈Tκ�v ≡M (bη)η∈Tω�w.

Proof. Let λ = 2|M |+|T | and set κ = iλ+(λ). Given a tree (aη)η∈Tκ s-indiscernible
and spread out over M , let

Γn = {tp((aη)η∈Tω�w/M) : w ∈ [κ]n}.
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By induction on n, we will find a sequence of types pn ∈ Γn so that

∆(xη : η ∈ Tω) =
⋃
n<ω

⋃
w∈[ω]n

pn(xη : η ∈ Tω � w).

is consistent. Construct by induction on n cofinal subsets Fn ⊆ λ+ and subsets
Xξ,n ⊆ κ so that

(1) Fn+1 ⊆ Fn
(2) |Xξ,n| > iα(λ) when ξ is the αth element of Fn
(3) If w ∈ [Xξ,n]n, then (aη)η∈Tκ�w |= pn.
(4) |Fn| = λ+.

For n = 0, we let F0 = λ+ and Xξ,0 = κ for all ξ < λ+. Suppose Fn and (Xξ,n)ξ∈Fn
have been constructed. Write Fn = {ξα : α < λ+} where the ξα enumerate Fn in
increasing order. Then for all α < λ+,

|Xξα+n+1,n| > iα+n+1(λ).

For a moment, fix ξ = ξα+n+1. Define a coloring on [Xξ,n]n+1 by

w 7→ tp((aη)η∈Tκ�w/M).

This is a coloring with at most λ many colors so by Erdős-Rado there is a homo-
geneous subset Xξ,n+1 ⊆ Xξ,n with |Xξ,n+1| > iα(λ). Let pn+1,α+n+1 denote its
constant value. By the pigeonhole principle, as the set of possible values is λ and
{α+n+1 : α < λ+} has size λ+, there must be some subset Y ⊆ {α+n+1 : α < λ+}
of cardinality λ+ so that β, β′ ∈ Y implies pn+1,β = pn+1,β′ . Let pn+1 = pn+1,β for
some/all β ∈ Y . Put Fn+1 = {ξβ : β ∈ Y }. Then pn+1, Fn+1, and (Xξ,n+1)ξ∈Fn+1

clearly satisfy the requirements.
By compactness, this shows that ∆(xη : η ∈ Tω) is consistent. Let (bη)η∈Tω be a

realization - now (bη)η∈Tω is a Morley tree over M . GIVE DETAILS �

4.2. The symmetry characterization of NSOP1. In this subsection, we prove
a version of Kim’s lemma for tree Morley sequences and use it to prove that Kim-
independence is symmetric over models in an NSOP1 theory. Lemma 4.11 is the
key step, showing that tree Morley sequences exist under certain assumptions. The
method of proof is an inductive construction of a spread out s-indiscernible tree,
from which a Morley tree (and hence a tree Morley sequence) can then be extracted.
This basic proof-strategy will be repeated several times throughout the paper.

{treeexistence}
Lemma 4.11. Suppose T is NSOP1, M |= T , and a |̂ K

M
b. For any ordinal

α ≥ 1, there is a spread out s-indiscernible tree (cη)η∈Tα over M , so that if η C ν
and dom(ν) = α, then cηcν ≡M ab.

Proof. We will argue by induction on α. For the case α = 1, fix q ⊇ tp(b/M), a

global M -invariant type. Let 〈bi : i < ω〉 |= q⊗ω|M . As a |̂ K
M
b, we may assume

this sequence is Ma-indiscernible. Put c1∅ = a and c〈i〉 = bi. It is now easy to check

that (c1η)η∈T1 is a spread out s-indiscernible tree satisfying the requirements.

Suppose for α we’ve constructed (cβη )η∈Tβ for 1 ≤ β ≤ α such that, if γ < β ≤ α
and η ∈ Tγ then cγη = cβiγβ(η). By spread-outness, we know that 〈cαD〈i〉 : i < ω〉
is an M -invariant Morley sequence which is, by s-indiscernibility over M , Mcα∅ -

indiscernible. Therefore, cα∅ |̂
K

M
(cαD〈i〉)i<ω. By extension (Proposition 3.18), we
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may find some c′ ≡M(cαD〈i〉)i<ω
cα∅ so that

c′
K

|̂
M

(cαη )η∈Tα .

Choose a global M -invariant type q ⊇ tp((cαη )η∈Tα/M). Let 〈(cαη,i)η∈Tα : i < ω〉 |=
q⊗ω|M with cαη,0 = cαη for all η ∈ Tα. By the chain condition (Lemma 3.19), we can

find c′′ ≡M(cαη )η∈Tα
c′ so that c′′ |̂ K

M
(cαη,i)η∈Tα,i<ω and 〈(cαη,i)η∈Tα : i < ω〉 is Mc′′-

indiscernible. Define a new tree (dη)η∈Tα+1 by setting d∅ = c′′ and diαα+1(η) = cαη
for all η ∈ Tα. Then let (cα+1

η )η∈Tα+1
be a tree s-indiscernible over M locally based

on (dη)η∈Tα . By an automorphism, we may assume cα+1
iαα+1(η) = cαη for all η ∈ Tα.

This satisfies our requirements.
Finally, suppose for δ limit we’ve constructed (cβη )η∈Tβ for 1 ≤ β < δ such that,

if γ < β < δ and η ∈ Tγ then cγη = cβiγβ(η). If η ∈ Tδ, then for some β < δ, there

is ν ∈ Tβ so that iβδ(ν) = η. Then put cδη = cβν . This defines for all β ≤ δ an

s-indiscernible tree (cβη )η∈Tη satisfying our requirements. �
{movingtms}

Lemma 4.12. Suppose T is NSOP1, M |= T , and a |̂ K
M
b. Then there is a tree

Morley sequence (ai)i<ω which is Mb-indiscernible with a0 = a.

Proof. By Lemma 4.11, for arbitrarily large cardinals κ, there is a tree (cη)η∈Tκ
which is spread out and s-indiscernible over M so that if η B ν and dom(ν) = κ
then cηcν ≡M ab. Note that T ′ = Tκ\{ν ∈ Tκ : dom(ν) = κ} = {η ∈ Tκ : dom(η) ⊆
[1, κ)} is isomorphic to Tκ. So we may enumerate (cη)η∈T ′ as (dη)η∈Tκ . Note that
for all η ∈ Tκ, dη ≡M a and dζα = cζ1+α for all α < κ. By Lemma 4.10, there is a
Morley tree over M (d′η)η∈Tω so that for all w ∈ [ω]<ω there is v ∈ [κ]<ω so that
(dη)η∈Tκ�v ≡M (d′η)η∈Tω�w.

Let p(x; a) = tp(b/Ma). We claim
⋃
i<ω p(x; d′ζi) is consistent. Given n, let

w = {0, . . . , n − 1}. Find v ∈ [κ]<ω so that (dη)η∈Tκ�v ≡M (d′η)η∈Tω�w. If v =
{α0, . . . , αn−1}, then for i < n we have dζα = c1+ζα . Then because cζ1+αi cζ0 ≡M ab

for all i < n, we have cζ0 |=
⋃
i<n p(x; dζαi ). This shows

⋃
i<n p(x; dζαi ) is consistent

and hence
⋃
i<n p(x; d′ζi) is consistent. The claim follows by compactness.

Let b′ |=
⋃
i<ω p(x; d′ζi). Extract from (d′ζi)i<ω an Mb-indiscernible sequence

(ai)i<ω. As (ai)i<ω ≡M (d′ζi)i<ω, we know (ai)i<ω is a tree Morley sequence. By

an automorphism, we may assume b′ = b and a0 = a. �

Proposition 4.13. (Kim’s lemma for tree Morley sequences) Suppose T is NSOP1{kimslemmafortms}
and M |= T . The following are equivalent:

(1) ϕ(x; a) Kim-divides over M .
(2) For some tree Morley sequence (ai)i<ω over M with a0 = a, {ϕ(x; ai) : i <

ω} is inconsistent.
(3) For every tree Morley sequence (ai)i<ω over M with a0 = a, {ϕ(x; ai) : i <

ω} is inconsistent.

Proof. Suppose (ai)i<ω is a tree Morley sequence over M . Let (aη)η∈Tω be a Morley
tree over M with aζi = ai. Let ηi ∈ Tω be the function with dom(ηi) = [i, ω) and

ηi(j) =

{
1 if i = j
0 otherwise.
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Consider the sequence I = (aη2i , aζ2i+1
)i<ω. Because (aη)η∈Tω is a Morley tree over

M , I is an M -indiscernible sequence. Moreover, by s-indiscernibility, aη0 ≡MI>0 aζ0
and because it is a Morley tree, we have aζ0 ≡MI>0 aζ1 . Therefore aη0 ≡MI>0 aζ1 .
By indiscernibility, for all i, we have aη2i ≡MI>i aζ2i+1

. Because (aη)η∈Tω is a

spread out tree over M , aηi |̂
i

M
aη<i for all i. Because (aη2i)i<ω is moreover

an M -indiscernible sequence, it is a Morley sequence in some global M -invariant
type. By NSOP1, it follows that {ϕ(x; aη2i) : i < ω} is consistent if and only if
{ϕ(x; aζ2i+1) : i < ω} is consistent: if exactly one of them is consistent, then we
have SOP1 by Proposition 2.4.

As (aη2i)i<ω is a Morley sequence in some global M -invariant type extending
tp(a/M), ϕ(x; a) Kim-divides over M if and only if {ϕ(x; aη2i) : i < ω} is in-
consistent. So we’ve shown ϕ(x; a) Kim-divides if and only if {ϕ(x; ai) : i < ω}
is inconsistent, by indiscernibility. This proves (1) =⇒ (3), since if (ai)i<ω was
a tree Morley sequence over M with a0 = a and {ϕ(x; ai) : i < ω} consistent,
then the above argument shows ϕ(x; a) does not Kim-divide over M . This also
proves (2) =⇒ (1), since if (ai)i<ω is a tree Morley sequence over M with a0 = a
and {ϕ(x; ai) : i < ω} inconsistent then the above argument shows ϕ(x; a) must
Kim-divide over M . The direction (3) =⇒ (2) is trivial. �

Proposition 4.14. (Chain condition for tree Morley sequences) Suppose T is {tmschaincondition}
NSOP1 and M |= T . If a |̂ K

M
b and I = (bi)i<ω is a tree Morley sequence over M

with b0 = b, then there is a′ ≡Mb a so that a′ |̂ K
M
I and I is Ma′-indiscernible.

Proof. We follow the proof of Proposition 3.19 above. Given n < ω, let r(x; y0, . . . , yn−1) =
tp(a′; b0, . . . , bn−1/M). By Lemma 4.9, 〈(bkn+n−1, bkn+n−2, . . . , bkn) : k < ω〉 is a
tree Morley sequence over M and, by indiscernibility,

a′ |=
⋃
k<ω

r(x; bkn+n−1, bkn+n−2, . . . , bkn).

By Proposition 4.13, this shows a′ |̂ K
M
b<n. �

Theorem 4.15. (Symmetry) Suppose T is a complete theory. The following are {symmetrycharthm}
equivalent:

(1) T is NSOP1

(2) |̂ K is symmetric over models: for any M |= T and tuples a, b from M,

a |̂ K
M
b ⇐⇒ b |̂ K

M
a

(3) |̂ K enjoys the following weak symmetry property: for any M |= T and

tuples a, b from M, a |̂ i
M
b implies b |̂ K

M
a.

Proof. (1) ⇐⇒ (3) is Proposition 3.20 and (2) =⇒ (3) is immediate from the fact

that a |̂ i
M
b implies a |̂ K

M
b.

(1) =⇒ (2). Suppose T is NSOP1. Assume towards contradiction that a |̂ K
M
b

and b 6 |̂ K
M
a. By Lemma 4.12, there is a tree Morley sequence over M with a0 = a

which is Mb-indiscernible. Since b 6 |̂ K
M
a, there is some ϕ(x; a) ∈ tp(b/Ma) which

Kim-divides over M . By Lemma 4.13, {ϕ(x; ai) : i < ω} is inconsistent. But
|= ϕ(b; ai) for all i < ω by indiscernibility, a contradiction. �
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5. The Independence Theorem {itsection}
5.1. Strengthening the chain condition. Before beginning the proof of the in-
dependence theorem, we will observe that tree Morley sequences can be ‘widened’
by adding on an independent tuple to each tuple in the sequence. Similar oper-
ations are possible for Morley sequences in simple theories using transitivity and
base monotonicity; in our context, we prove this by directly constructing an s-
indiscernible and spread out tree.

{widening}
Proposition 5.1. Assume T is NSOP1 and M |= T . Suppose a |̂ K

M
b and (bi)i<κ

is an Ma-indiscernible tree Morley sequence over M in tp(b/M). Then there is a
tree Morley sequence 〈aibi : i < κ〉 so that

aib≥i ≡M a0b≥0,

for all i < κ.

Proof. By induction on α < κ, we will build (aαη , b
α
η )η∈Tα and sequences 〈bα,β :

α+ 1 ≤ β < κ〉 so that

(1) For all η ∈ Tα, aαη b
α

Eηbα ≡M a〈bβ : min dom(η) ≤ β < κ〉 .
(2) 〈bα,β : α+ 1 ≤ β < κ〉 is M(aαη , b

α
η )η∈Tα -indiscernible.

(3) (aαη , b
α
η )η∈Tα is spread out over M and s-indiscernible over Mbα.

(4) If α < β, then (aβiαβ(η), b
β
iαβ(η)) = (aαη , b

α
η ) for all η ∈ Tα.

Note that bαEη enumerates a sequence indexed by [min dom(η), α). Concatenation

with the sequence bα yields a sequence indexed by [min dom(η), κ). Our intention
in (1) is that there is an automorphism in Aut(M/M) sending this sequence to
〈bβ : β ∈ [α, κ)〉 which moreover sends aαη to a.

For the base case, define (a0
∅, b

0
∅) = (a0, b0). This defines (a0

η, a
0
η)η∈T0 . Define

〈b0,β : 1 ≤ β < κ〉 by b0,β = bβ .

Suppose for some α < κ, we are given (aαη , b
α
η )η∈Tα and bα satisfying the re-

quirements. By (2), we have 〈bα,β : α+ 1 ≤ β < κ〉 is M(aαη , b
α
η )η∈Tα-indiscernible

so

(aαη , b
α
η )η∈Tα

K

|̂
M

bα,

since bα is a tree Morley sequence over M by (1). By symmetry, then,

bα
K

|̂
M

(aαη , b
α
η )η∈Tα .

Therefore, there is an M -invariant Morley sequence 〈(aαη,i, bαη,i)η∈Tα : i < ω〉 which

is Mbα-indiscernible with (aαη,0, b
α
η,0)η∈Tα = (aαη , b

α
η )η∈Tα . Choose some a∗ so that

a∗bα ≡M a〈bβ : α + 1 ≤ β < κ〉. By compactness, Ramsey, and an automorphism,

we may assume that 〈(aαη,i, bαη,i)η∈Tα : i < ω〉 is Ma∗bα-indiscernible. Define a tree
(cη, dη)η∈Tα+1

by (aαη , b
α
η ) = (ciαα+1(η), diαα+1(η)) and (c∅, d∅) = (a∗, bα,α+1). Let

(aα+1
η , bα+1

η )η∈Tα+1
be a tree s-indiscernible over M〈bα,β : α + 2 ≤ β < κ〉 and

locally based on (cη, dη)η∈Tα+1
. Finally, define 〈bα+1,β : α + 2 ≤ β < κ〉 to be

an M(aαη , b
α
η )η∈Tα -indiscernible sequence locally based on 〈bα,β : α + 2 ≤ β < κ〉.

This completes the construction at successor steps. By an automorphism, we may
assume (aα+1

iαα+1(η), b
α+1
iαα+1(η)) = (aαη , a

α
η ) for all η ∈ Tα so condition (4) is preserved.
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If δ is a limit and we’re given (aαη , b
α
η )η∈Tα for all α < δ, define for all α < δ,

(aδiαδ(η), b
δ
iαδ(η)) for all η ∈ Tα. Condition (4) guarantess that this is well-defined

and, as Tδ is the direct limit of the Tα, this defines (aδη, b
δ
η) for all η ∈ Tδ. By

compactness and (4), we may easily find a sequence 〈bδ,β : δ ≤ β < κ〉 satisfying
the requirements. �

Corollary 5.2. (Strong Chain Condition) Suppose a |̂ K
M
bc and I = (ci)i<κ is an

M -invariant Morley sequence which is moreover Mb-indiscernible. Then there is

a′ ≡Mbc a with a′ |̂ K
M
bI and I is Ma′-indiscernible.

Proof. By Proposition 5.1, we may extend I to a tree Morley sequence J = (bi, ci)i<κ
with b0 = b. By the chain condition for tree Morley sequences, there is a′ ≡Mbc a

so that J is Ma′-indiscernible and a′ |̂ K
M
J . In particular, a′ |̂ K

M
bI. �

5.2. The proof of the independence theorem.

Fact 5.3. [CK12, Remark 2.16] Write a |̂ u
A
b to mean that tp(a/Ab) is finitely

satisfiable inA – the u is for “ultrafilter” as this is equivalent to asserting tp(a/Ab) =
Av(D, Ab) for some ultrafilter D on A. The relation |̂ u satisfies both left and right
extension over models:

(1) If M is a model and a |̂ u
M
b then for all c, there is some a′ ≡Mb a so that

a′ |̂ u
M
bc.

(2) If M is a model and a |̂ u
M
b then for all d, there is some b′ ≡Ma b so that

ad |̂ u
M
b.

The full independence theorem will be deduced from a weak independence the-
orem, which has an easy proof:

{reduction}
Proposition 5.4. Assume T is NSOP1. Then |̂ K satisfies the following weak

independence theorem over models: if M |= T , a ≡M a′, a |̂ K
M
b, a′ |̂ K

M
c and

b |̂ u
M
c, then there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a

′ and a′′ |̂ K
M
bc.

Proof. Suppose T is NSOP1 and fix M |= T and tuples a, a′, b, c so that a ≡M a′,

a |̂ K
M
b, a′ |̂ K

M
c and b |̂ u

M
c.

Claim: There is c′ so that ac′ ≡M a′c and a |̂ K
M
bc′.

Proof of claim: By symmetry, it suffices to find c′ with ac′ ≡M a′c and bc′ |̂ K
M
a.

Let p(x; a′) = tp(c/Ma′). By invariance, we know p(x; a) does not Kim-fork over
M . We have to show

p(x; a) ∪ {¬ϕ(x, b; a) : ϕ(x, y; a) ∈ L(Ma) Kim-divides over M}

is consistent. If not, then by compactness and Kim-forking = Kim-dividing, we
must have

p(x; a) ` ϕ(x, b; a),

for some ϕ where ϕ(x, y; a) Kim-divides over M . By symmetry, b |̂ K
M
a, so there

is some M -invariant Morley sequence (ai)i<ω with a0 = a which is moreover Mb-
indiscernible. Then we have⋃

i<ω

p(x; ai) ` {ϕ(x, b; ai) : i < ω}.
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As p(x; a) does not Kim-fork over M , we know
⋃
i<ω p(x; ai) is consistent. But, by

Kim’s lemma for Kim-dividing, we know {ϕ(x, y; ai) : i < ω} is inconsistent and a
fortiori {ϕ(x, b; ai) : i < ω} is inconsistent, a contradiction. So the given partial

type is consistent. Let c′ realize it. Then ac′ ≡M a′c and c′b |̂ K
M
a, which proves

the claim. �
As b |̂ u

M
c, by left extension, there is c′′ ≡Mb c with bc′ |̂ u

M
c′′. Then by right

extension and automorphism, we can choose some b′′ so that bc′ ≡M b′′c′′ and
bc′ |̂ u

M
b′′c′′. As bc′ |̂ u

M
b′′c′′ and bc′ ≡M b′′c′′, it follows that (b′′c′′, bc′) starts a

Morley sequence I in some global M -finitely satisfiable (hence M -invariant) type.

As a |̂ K
M
bc′, we may, by the chain condition (Proposition 3.19) find some a∗ ≡Mbc′

a so that I is Ma∗-indiscernible and a∗ |̂ KM I. Then, we obtain a∗ ≡Mb a, a∗c
′′ ≡M

a′c, and a∗ |̂ KM bc′′. By construction, c′′ ≡Mb c so there is σ ∈ Aut(M/Mb) with

σ(c′′) = c. Then σ(a∗) |̂ KM bc, σ(a∗) ≡Mb a, and σ(a∗) ≡Mc a
′, which shows that

the weak independence theorem over models holds for T . �
{consistenttree}

Lemma 5.5. Suppose T is NSOP1, M |= T , and a |̂ K
M
b. Fix an ordinal α and

any q ⊇ tp(b/M), a global M -invariant type. If (bη)η∈Tα is a tree, spread out over
M , so that, for all ν ∈ Tα, bν |= q|MbBν , then, writing p(x; b) for tp(a/Mb), we
have ⋃

η∈Tα

p(x; bη)

is consistent and non-Kim-forking.

Proof. Recall that ζβ is the function in Tα with domain [β, α) which is identically
zero. Our assumption entails that (bζβ )β<α is a Morley sequence over M in q.

By the chain condition, there is a′ |=
⋃
β<α p(x; bζη ) with a′ |̂ K

M
(bζβ )β<α. By

induction on β < α, we will pick aβ so that

aβ |=
⋃
ηDζβ

p(x; bη) ∪
⋃

β<γ<α

p(x; bζγ )

and aβ |̂ KM (bη)ηDζβ (bζγ )β<γ<α. As Tα =
⋃
β<α{η ∈ Tα : ζβ E η}, this suffices.

To start, put a0 = a′. Now suppose aβ is given. Note ζβ+1 _ 〈0〉 = ζβ , so we
have

aβ
K

|̂
M

(bη)ηDζβ+1_〈0〉(bζγ )β<γ<α.

As the tree is spread out over M , the sequence 〈bDζβ+1_〈i〉 : i < ω〉 is an M -
invariant Morley sequence and, moreover, we know (bζγ )β<γ<α is a Morley sequence
over M(bDζβ+1_〈i〉)i<ω in q, which implies that 〈bDζβ+1_〈i〉 : i < ω〉 is M(bγ)β<γ<α-
indiscernible. By the strong chain condition, we may find aβ+1 so that

aβ+1 ≡M(bη)ηDζβ+1_〈0〉(bζγ )β<γ<α aβ

and also 〈bDζβ+1_〈i〉 : i < ω〉 is Maβ+1-indiscernible and

aβ+1

K

|̂
M

((bη)ηDζβ+1_〈i〉)i<ω(bζγ )β<γ<α.
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Unravelling, we have

aβ+1 |=
⋃

ηDζβ+1

p(x; bη) ∪
⋃

β+1<γ<α

p(x; bζγ )

and aβ+1 |̂ KM (bη)ηDζβ+1
(bζγ )β+1<γ<α. This completes the successor step.

If δ < α is a limit and we have aβ for all β < δ, we may find an aδ satisfying the
requirements by compactness and finite character of Kim-dividing. This completes
the proof. �

{zigzag}
Lemma 5.6. Suppose the complete theory T is NSOP1, M |= T and b |̂ K

M
b′. Then

for any global M -invariant type q ⊇ tp(b/M), there is a TMS (bi, b
′
i)i<ω starting

with (b, b′) so that

(1) If i ≤ j, then bib
′
j ≡M bb′

(2) If i > j, then bi |= q|Mbj .

Proof. Fix q ⊇ tp(b/M) and let p(x; b) = tp(b′/Mb). By recursion on α, we will
construct trees (cαη , d

α
η )η∈Tα so that, for all α

(1) If η ∈ Tα, then

cαη |= q|McαBηd
α
Bη

(2) If η ∈ Tα, then

dαη |=
⋃
νDη

p(x; cαν )

(3) (cαη , d
α
η )η∈Tα is spread out and s-indiscernible over M

(4) If β < α then (cαiβα(η), d
α
iβα(η)) = (cβη , d

β
η ) for all η ∈ Tβ .

To start, define (c0∅, d
0
∅) = (b, b′). This defines (c0η, d

0
η)η∈T0 .

Now suppose given (cαη , d
α
η )η∈Tα . Let 〈(cαη,i, dαη,i) : i < ω〉 be an M -invariant

Morley sequence with (cαη,0, d
α
η,0)η∈Tα = (cαη , d

α
η )η∈Tα . Pick c∗ so that

c∗ |= q|M(cαη,i,d
α
η,i)η∈Tα,i<ω

.

Then, by Lemma 5.5, we may choose d∗ so that

d∗ |=
⋃
η∈Tα
i<ω

p(x; cαη,i) ∪ p(x; c∗).

Define a tree (eη, fη)η∈Tα+1
by

(e∅, f∅) = (c∗, d∗)

(e〈i〉_η, f〈i〉_η) = (cαη,i, d
α
η,i).

Finally, let (cα+1
η , dα+1

η )η∈Tα+1
be a tree s-indiscernible over M locally based on

this tree. By an automorphism, we may assume that cα+1
iαα+1(η) = cαη for all η ∈ Tα.

This satisfies the requirements.
Finally, arriving to stage δ for δ limit, we simply define (cδη, d

δ
η)η∈Tδ by stipulating

(cδiβδ(η), d
δ
iβδ(η)) = (cβη , d

β
η ) for all β < δ. By the coherence condition (4), this is well-

defined, and satisfies the requirements. �
{itthmchar}

Theorem 5.7. Suppose T is a complete theory. The following are equivalent:

(1) T is NSOP1
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(2) |̂ K satisfies the independence theorem over models: if M |= T , a ≡M a′,

a |̂ K
M
b, a′ |̂ K

M
c, and b |̂ K

M
c, then there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a

′

and a′′ |̂ K
M
bc.

Proof. (2) =⇒ (1) follows from [CR16, Theorem 5.1], using that |̂ i implies |̂ K ,

together with symmetry for |̂ K .

(1) =⇒ (2): Assume T is NSOP1. Suppose M |= T , a ≡M a′, and a |̂ K
M
b,

a′ |̂ K
M
c and b |̂ K

M
c. We must show there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a

′ and

a′′ |̂ K
M
bc. Let p0(x; b) = tp(a/Mb) and p1(x; c) = tp(a′/Mc). Suppose towards

contradiction that p0(x; b) ∪ p1(x; c) Kim-forks over M . Let q ⊇ tp(b/M) be a
global type finitely satisfiable in M . In particular, q is M -invariant so, by Lemma
5.6, there is a tree Morley sequence over M , (bi, ci)i∈Z so that

(1) If i ≤ j, then bicj ≡M bc
(2) If i > j, then bi |= q|Mcj .

Then both (b2i, c2i+1)i∈Z and (b2i, c2i−1)i∈Z are tree Morley sequences over M . By
(1), we know p0(x; b0) ∪ p1(x; c1) Kim-forks over M so⋃

i∈Z
p0(x; b2i) ∪ p1(x; c2i+1)

is inconsistent. However, because b0 |̂ uM c−1 by (2), Proposition 5.4 gives that

p0(x; b0) ∪ p1(x; c−1) does not Kim-fork over M . Therefore⋃
i∈Z

p0(x; b2i) ∪ p1(x; c2i−1)

is consistent. And this is a contradiction, as these two partial types are the same.
This completes the proof. �

Corollary 5.8. Suppose T is NSOP1, M |= T , b ≡M b′ and b |̂ K
M
b′. Then there

is a tree Morley sequence over M , starting with (b, b′).

Proof. Let p(x; b) = tp(b′/Mb). By induction on ordinals α ≥ 1, we will build trees
(bαη )η∈Tα spread out and s-indiscernible over M so that

(1) ν C η then bαν b
α
η ≡M b′b.

(2)
⋃
η∈Tα p(x; bαη ) does not Kim-fork over M .

(3) If 1 ≤ β < α, then bαiβα(η) = bβη .

To start, let b = (bi)i<ω be an M -invariant Morley sequence - as b |̂ K
M
b′, we

may assume this sequence is Mb′-indiscernible. By the chain condition, we have

b′ |̂ K
M
b. Let q(x; b) = tp(b′/Mb). By the Independence Theorem, there is b′′ |=

p(x; b′)∪ q(x; b) with b′′ |̂ K
M
b′b. Define (b1η)η∈T1 by b1∅ and b1〈i〉 = bi. Then (b1η)η∈T1

is spread out and s-indiscernible over M and clearly satisfies (1). Moreover, as

b′′ |=
⋃
η∈T1

p(x; b1η)

and b′′ |̂ K
M

(b1η)η∈T1 , (2) is satisfied as well.
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Now suppose given (bαη )η∈Tα . Let 〈(bαη,i)η∈Tα : i < ω〉 be an M -invariant Morley

sequence with (bαη,0)η∈Tα = (bαη )η∈Tα . Choose b′′ |̂ K
M

(bα)η∈Tα with

b′′ |=
⋃
η∈Tα

p(x; bαη ),

(this is possible by (2)). By the chain condition, we may assume the sequence

〈(bαη )η∈Tα : i < ω〉 is Mb′′-indiscernible and that b′′ |̂ K
M

(bαη,i)η∈Tα,i<ω. Define a

tree (cη)η∈Tα+1
by c∅ = b′′ and c〈i〉_η = bαη,i. Then let (bα+1

η )η∈Tα+1
be a tree which

is s-indiscernible over M and locally based on (cη)η∈Tα . By an automorphism, we

may assume that bα+1
iαα+1(η) = bαη for all η ∈ Tα. This satisfies the requirements.

Finally, if δ is a limit and we are given (bαη∈Tα)η∈Tα for all α < δ, define (bδη∈Tδ
as follows: if η ∈ Tδ, choose any α < δ and ν ∈ Tα so that η = iαδ(ν). Then define
bδη = bαν . By the coherence condition, this is well-defined and clearly satisfies the
requirements.

To conclude, let κ be big enough for Erdős-Rado and consider (bκη)η∈Tκ given
by the above construction. Let (bκζα)α<κ be an enumeration of the all zero’s path

in the tree. Apply Erdős-Rado to find (ci)i<ω M -indiscernible and based on this
sequence. By an automorphism, we may assume c0 = b and c1 = b′. �

6. Forking and Witnesses

6.1. Basic properties of forking.
{forkingandidivdingdef}

Definition 6.1. (1) The formula ϕ(x; b) divides overA if there is anA-indiscernible
sequence 〈bi : i < ω〉 so that {ϕ(x; bi) : i < ω} is inconsistent. A type p(x)

divides over A if it implies some formula that divides over A. Write a |̂ d
A
B

to mean that tp(a/AB) does not divide over A.
(2) The formula ϕ(x; b) forks over A if ϕ(x; b) implies a finite disjunction∨

i ψi(x; ci) where each ψi(x; ci) divides over A. A type p(x) forks over

A if it implies a formula which forks over A. We write a |̂ f
A
B to mean

that tp(a/AB) does not fork over A.

(3) When M is a model, write a |̂ i
M
b to mean tp(a/Mb) extends to global

M -invariant type.

The following facts about forking and dividing are easy and well-known – see,
e.g., [GIL02] [Adl05].

Fact 6.2. The following are true with respect to an arbitrary theory:

(1) a |̂ d
A
b if and only if, given any A-indiscernible sequence I = 〈bi : i < ω〉

with b = b0, there is a′ ≡Ab a so that I is Aa′-indiscernible.

(2) |̂ f is an invariant ternary relation on small subsets satisfying:

(a) (Extension) If a |̂ f
A
b, then, for all c, there is a′ ≡Ab a so that

a′ |̂ f
A
bc.

(b) (Base Monotonicity) If a |̂ f
A
bc then a |̂ f

Ab
c.

(c) (Left Transitivity) If a |̂ f
Ab
c and b |̂ f

A
c then ab |̂ f

A
c.

(3) For any model M ,

a
i

|̂
M

b =⇒ a
f

|̂
M

b =⇒ a
K

|̂
M

b.
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As a warm-up to the theorem in the next subsection, we note that these prop-

erties easily give a weak form of transitivity for |̂ K :

Lemma 6.3. Suppose a |̂ f
M
bc and b |̂ K

M
c. Then ab |̂ K

M
c.

Proof. Assume a |̂ f
M
bc and b |̂ K

M
c. As b |̂ K

M
c there is an M -invariant Morley

sequence I = (ci)i<ω which is, moreover, Mb-indiscernible. By base monotonicity of

|̂ f , a |̂ f
Mb

c so there is anMab-indiscernible sequence I ′ = (c′i)i<ω with I ′ ≡Mbc I.

Thus I ′ is an M -invariant Morley sequence with c′0 = c which is Mab-indiscernible.

It follows that ab |̂ K
M
c. �

6.2. Morley Sequences.

Definition 6.4. Suppose M |= T . An |̂ K-Morley sequence over M is an M -

indiscernible sequence 〈bi : i < ω〉 satisfying bi |̂ KM b<i. Likewise, an |̂ f -Morley

sequence over M is an M -indiscernible sequence 〈bi : i < ω〉 satisfying bi |̂ fM b<i.
{consistentindk}

Lemma 6.5. Suppose the complete theory T is NSOP1, M |= T , and ϕ(x; b) does

not Kim-divide over M . Then for any |̂ K-Morley sequence 〈bi : i < ω〉 over M
with b0 = b, {ϕ(x; bi) : i < ω} is non-Kim-forking over M . In particular, this set
of formulas is consistent.

Proof. By induction on n, we will show {ϕ(x; bi) : i ≤ n} is non-Kim-forking over
M . The case of n = 0 follows by hypothesis. Now suppose {ϕ(x; bi) : i ≤ n}
is non-Kim-forking over M . Fix σ ∈ Aut(M/M) with σ(b0) = bn+1. Let a |=
{ϕ(x; bi) : i ≤ n} with a |̂ K

M
b≤n. Then σ(a) ≡M a and |= ϕ(σ(a); bn+1). We know

bn+1 |̂ KM b≤n so by the Independence Theorem, there is a′ with a′ ≡Mb≤n a and

a′ ≡Mbn+1
σ(a) so that a′ |̂ K

M
b≤n+1. As a′ |= {ϕ(x; bi) : i ≤ n+1}, this completes

the induction. The lemma, then, follows by compactness. �
{kimslemmaforforking}

Theorem 6.6. Suppose the complete theory T is NSOP1 and M |= T . The follow-
ing are equivalent:

(1) ϕ(x; b) Kim-divides over M

(2) For some |̂ f -Morley sequence (bi)i<ω over M with b0 = b, {ϕ(x; bi) : i <
ω} is inconsistent.

(3) For every |̂ f -Morley sequence (bi)i<ω over M with b0 = b, {ϕ(x; bi) : i <
ω} is inconsistent.

Proof. (3) =⇒ (1) ⇐⇒ (2) is immediate, as a Morley sequence in a global M -

invariant type is, in particular, an |̂ f -Morley sequence and such sequences always
exist.

Now we show (1) =⇒ (3). Suppose not - assume that ϕ(x; b) is a formula which

Kim-divides over M , but there is some |̂ f -Morley sequence over M with b0 = b
so that {ϕ(x; bi) : i < ω} is consistent. By induction on n, we will construct a
sequence (b′i)i≤n and an elementary chain (Ni)i≤n so that

(1) For all n < ω, b0 . . . bn ≡M b′0 . . . b
′
n

(2) For all n < ω, M ≺ Nn ≺ Nn+1 ≺M
(3) For all n < ω, b′n |̂

f

M
Nn

(4) For all n < ω, b′n ∈ Nn+1.
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For the n = 0 case, set b′0 = b0 and N0 = M . Now suppose we are given (Ni)i≤n
and (b′i)i≤n. Let Nn+1 be an arbitrary (small) elementary extension of Nn which

contains b′n. By invariance and extension of |̂ f , we may choose some b′n+1 so that

b′0 . . . b
′
n+1 ≡M b0 . . . bn+1 and b′n+1 |̂

f

M
Nn+1. This completes the recursion.

Set N =
⋃
i<ω Ni.

Claim 1: For all n < ω, (b′i)i≥n |̂
f

M
Nn.

Proof of claim: Fix n. We will argue by induction on k that b′n . . . b
′
n+k |̂

f

M
Nn.

For k = 0, this is by construction. Assume it has been proven for k. Note that

b′n+k+1 |̂
f

M
Nn+k+1. Now Nn and (b′i)i≤n+k are contained in Nn+k+1 so, in par-

ticular, we have b′n+k+1 |̂
f

M
Nnb

′
0 . . . b

′
n+k. By base monotonicity, we have

b′n+k+1

f

|̂
Mb′0...b

′
n+k

Nn.

This, together with the induction hypothesis, implies

b′0 . . . b
′
n+k+1

f

|̂
M

Nn

by left-transitivity. The claim follows by finite character. �
Let D be any non-principal ultrafilter on {b′i : i < ω} and (ci)i<ω be sequence

chosen so that ci |= Av(D, Nc<i), i.e. a Morley sequence over N in the global
M(b′i)i<ω-invariant type Av(D,M).

Claim 2: (ci)i<ω |̂ fM N .
Proof of claim: Suppose not. Then by finite character, there is l so that

(ci)i<l 6 |̂ fM N so we choose some ϕ(x0, . . . , xl−1; d) ∈ tp(c0, . . . , cl−1/N) which
forks over M . Choose n so that d ∈ Nn. By definition of average type, we may

find i0 > . . . > il−1 > n so that M |= ϕ(b′i0 , . . . , b
′
il−1

; d). Then (b′i)i≥n 6 |̂
f

M
Nn,

contradicting Claim 1. �
Let q ⊇ tp((ci)i<ω/M) be a global M -invariant type. Let 〈(ck,i)i<ω : k < ω〉

be a Morley sequence over M in q with c0,i = ci for all i < ω. By Claim 2, we

know (ci)i<ω |̂ fM N so we may assume the sequence 〈(ck,i)i<ω : k < ω〉 is N -

indiscernible. We know that {ϕ(x; bi) : i < ω} is consistent so {ϕ(x; b′i) : i < ω} is
consistent, and therefore {ϕ(x; c0,i) : i < ω} is consistent. The sequence (c0,i)i<ω
is also an N -invariant Morley sequence so ϕ(x; c0,0) does not Kim-divide over N .
But as c0,0 ≡M b, (ci,0)i<ω is an M -invariant Morley sequence over M , and ϕ(x; b)
Kim-divides over M , we know that {ϕ(x; ci,0) : i < ω} is inconsistent.

Let (di)i<ω be an array, strongly indiscernible over N , locally based on (ci)i<ω.
By Lemma 3.8, we have (di,0)i<ω ≡M (ci,0)i<ω. Also, because (ci)i<ω was taken
to be N -indiscernible and c0 was an N -invariant Morley sequence, we know each ci
is an N -invariant Morley sequence, and therefore each di is an N -invariant Morley
sequence. By choice of the array, {ϕ(x; di,j) : j < ω} is consistent for all i, so
ϕ(x; di,0) does not Kim-divide over N . Also, we have {ϕ(x; di,0) : i < ω} is incon-
sistent. Thus, to derive a contradiction, it suffices by Lemma 6.5 to establish the
following:

Claim 3: (di,0)i<ω is an |̂ K-Morley sequence over N .
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Proof of claim: As the (di,j)i,j<ω form a strongly indiscernible array over N , we

know that for each i < ω, di is an Nd<i-indiscernible sequence. But it is also an N -

invariant Morley sequence so d<i |̂ KN di,0. By symmetry, this yields in particular

that di,0 |̂ KN d0,0 . . . di−1,0. This proves the claim and completes the proof. �

6.3. Witnesses.

Definition 6.7. Suppose M is a model and (ai)i<ω is an M -indiscernible sequence.

(1) Say (ai)i<ω is a witness for Kim-dividing over M if, whenever ϕ(x; a0)
Kim-divides over M , {ϕ(x; ai) : i < ω} is inconsistent.

(2) Say (ai)i<ω is a strong witness to Kim-dividing over M if, for all n, the
sequence 〈(an·i, an·i+1, . . . , an·i+n−1) : i < ω〉 is a witness to Kim-dividing
over M .

Proposition 4.13 and Lemma 4.9 show that tree Morley sequences are strong
witnesses for Kim-dividing. The following proposition shows the converse, giving a
characterization of strong witnesses as exactly the tree Morley sequences.

{witnesschar}
Proposition 6.8. Suppose T NSOP1 and M |= T . Then (ai)i<ω is a strong witness
for Kim-dividing over M if and only if (ai)i<ω is a tree Morley sequence over M .

Proof. If (ai)i<ω is a tree Morley sequence, then (an·i, an·i+1, . . . , an·i+(n−1))i<ω is
also a tree Morley sequence over M by Lemma 4.9. It follows that (ai)i<ω is a
strong witness to Kim-dividing by Proposition 4.13.

For other other direction, suppose (ai)i<ω is a strong witness to Kim-dividing
over M . Given an arbitrary cardinal κ, we may, by compactness, stretch the se-
quence to (ai)i<κ which is still a strong witness to Kim-dividing over M . By
recursion on α < κ, we will construct trees (aαη )η∈Tα so that

(1) For all i < α, aαζi = ai and also aαζα = aα for α successor.

(2) (aαη )η∈Tα is spread out over M and s-indiscernible over M(ai)i>α.

(3) If α < β, then aαη = aβiαβ(η) for all η ∈ Tα.

For the case α = 0, put a0
∅ = a0. This satisfies the demands. Suppose (aβη )η∈Tβ has

been defined for all β ≤ α. By Ramsey, compactness, and an automorphism, we
may assume (ai)i>α is M(aαη )η∈Tα-indiscernible. As I>α = (ai)i>α is also a strong
witness to Kim-dividing over M , we have

(aαη )η∈Tα
K

|̂
M

I>α.

Let J = 〈(aαη,i)η∈Tα : i < ω〉 be a Morley sequence in an M -invariant type with

aαη,0 = aαη for all η ∈ Tα. By symmetry, I>α |̂ KM (aαη )η∈Tα so we may assume J is

MI>α-indiscernible. Define the tree (aα+1
η )η∈Tα+1 by aα+1

ζα+1
= aα+1 and aα+1

〈i〉_η =

aαη,i for all η ∈ Tα and i < ω. Note in particular, this definition gives aα+1
iαα+1(η) =

aα+1
0_η = aαη for all η ∈ Tα. The tree we just constructed is clearly spread out.

By an automorphism, we may further assume (aα+1
η )η∈Tα+1

is s-indiscernible over
MI>α+1. This completes the successor step.

Now suppose given (aβη )η∈Tβ for all β < δ, where δ is a limit. Define (aδη)η∈Tδ by

setting aδiαδ(η) = aαη for all α < δ and η ∈ Tα. Condition (3) guarantees that this is

well-defined.
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Taking κ to be sufficiently large, we may extract a Morley tree from the tree
we just constructed - in particular, we may obtain a Morley tree (bη)η∈Tω so that
(bζi)i<ω ≡M (ai)i<ω. This shows that (ai)i<ω is a tree Morley sequence over M . �

{forkingimpliestree}
Corollary 6.9. Suppose T is NSOP1 and M |= T . An |̂ f -Morley sequence over
M is an tree Morley sequence.

Proof. Suppose (ai)i<ω is an |̂ f -Morley sequence over M .

Claim: For all n < ω, a>n |̂ fM a≤n.
We will argue as in Claim 1 in the proof of Theorem 6.6 above. By finite

character, it suffices to show an+1 . . . an+k+1 |̂ fM a<n for all k. For k = 0, this
is by definition of Morley sequence. Assuming for k, we have, by induction,

an+1 . . . an+k+1 |̂ fM a≤n. We also have an+k+2 |̂ fM a≤n+k+1 so by base mono-
tonicity

an+k+2

f

|̂
Man+1...an+k+1

a≤n.

By left-transitivity, we have

an+1 . . . an+k+1an+k+2

f

|̂
M

a≤n,

which proves the claim.

By the claim, 〈(an·i, an·i+1, . . . , an·i+n−1) : i < ω〉 is an |̂ f -Morley sequence
over M , hence a witness to Kim-dividing over M by Theorem 6.6. This shows
(ai)i<ω is a strong witness to Kim-dividing over M . By Proposition 6.8, (ai)i<ω is
a tree Morley sequence over M . �

In any theory, if (ai)i<ω is an |̂ f -Morley sequence over A, then, as the proof

of Corollary 6.9 shows, that a>n |̂ fA a≤n for all n < ω. As base monotonicity and

left-transitivity do not necessarily hold for |̂ K , we give a Morley sequence with
this stronger behavior a name:

Definition 6.10. Say the M -indiscernible sequence (ai)i<ω is a total |̂ K-Morley

sequence if a>n |̂ KM a≤n for all n < ω.

Question 6.11. Suppose T is NSOP1, M |= T , and I = (ai)i<ω is a total |̂ K-
Morley sequence over M . Is I a tree Morley sequence over M?

7. Characterizing NSOP1 and Simple Theories
{mtsection}

7.1. The Main Theorem. Before continuing with the rest of the paper, we pause
to take stock of what has been shown: {mainthm}
Theorem 7.1. The following are equivalent for the complete theory T :

(1) T is NSOP1

(2) Ultrafilter independence of higher formulas: for every model M |= T , and
ultrafilters D and E on M with Av(D,M) = Av(E ,M), (ϕ,M,D) is higher
if and only if (ϕ,M, E) is higher

(3) Kim’s lemma for Kim-dividing: For every model M |= T and ϕ(x; b), if
ϕ(x; y) q-divides for some global M -invariant q ⊇ tp(b/M), then ϕ(x; y)
q-divides for every global M -invariant q ⊇ tp(b/M).
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(4) Symmetry over models: for every M |= T , then a |̂ K
M
b if and only if

b |̂ K
M
a.

(5) Independence theorem over models: if M |= T , a ≡M a′, a |̂ K
M
b, a′ |̂ K

M
c,

and b |̂ K
M
c, then there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a

′ and a′′ |̂ K
M
bc.

Proof. (1)⇐⇒ (2)⇐⇒ (3) is Theorem 3.14.
(1)⇐⇒ (4) is Theorem 4.15.
(1)⇐⇒ (5) is Theorem 5.7. �

7.2. Simplicity within the class of NSOP1 theories.

Definition 7.2. [Che14, Section 6] Suppose p(x) is a partial type over the set A.{simplecosimpledef}
(1) We say p is a simple type if there is no ϕ(x; y), (aη)η∈ω<ω and k < ω so that
{ϕ(x; aη_〈i〉) : i < ω} is k-inconsistent for all η ∈ ω<ω and {ϕ(x; aη|i) : i <
ω} is consistent for all η ∈ ωω. Equivalently, p(x) is simple if, whenever
B ⊇ A, q ∈ S(B), and p ⊆ q, then q does not divide over AB′ for some
B′ ⊆ B, |B′| ≤ |T | (for the definition of dividing, see Definition 6.1 below).

(2) We say p(x) is a cosimple type if there is no formula ϕ(x; y) ∈ L(A) for
which there exists (aη)η∈ω<ω and k < ω so that {ϕ(x; aη_〈i〉) : i < ω} is
k-inconsistent for all η ∈ ω<ω and {ϕ(x; aη|i) : i < ω} is consistent for all
η ∈ ωω and moreover aη |= p for all η ∈ ω<ω.

{simpletype}
Proposition 7.3. Let π(x) be a partial type over A.

(1) Assume that for any ϕ(x; a) and B ⊇ A, π ∪ {ϕ(x; a)} divides over B if
and only if π ∪ {ϕ(x; a)} Kim-divides over B. Then π is a simple type.

(2) Assume that if B ⊇ A, then for any a and for any b |= π(x), a |̂ f
B
b if and

only if a |̂ K
B
b. Then π is a co-simple type.

Proof. (1) Suppose π is not simple. Then by compactness, there is a formula ϕ(x; y)
over A and a tree (aη)η∈ω<ω+1 s-indiscernible over A so that for some k < ω

• For all η ∈ ωω+1, π(x) ∪ {ϕ(x; aη|α) : α < ω + 1} is consistent

• For all η ∈ ω<ω+1, {ϕ(x; aη_α) : α < ω} is k-inconsistent.

Moreover we may assume (a0α : α < ω + 1) is an A-indiscernible sequence. Let
b |= π(x) ∪ {ϕ(x; a0α) : α < ω + 1}. By Ramsey, compactness, and automor-
phism, we may assume (a0α : α < ω + 1) is Ab-indiscernible. Let C = {a0α :
α < ω}. Then s-indiscernibility implies (a0ω_β : β < ω) is indiscernible over
A ∪ C and {ϕ(x; a0ω_β) : β < ω} is k-inconsistent by our assumption. As

b |= ϕ(x; a0ω_0), we have b 6 |̂ d
AC

a0ω_0. But by indiscernibility, a0ω_0 |̂ uAC b
so in particular a0ω_0 |̂ KAC b and b |̂ K

AC
a0ω_0.

(2) We argue similarly. Suppose (aη)η∈ω<ω+1 is a collection of realizations of π,
forming a tree s-indiscernible over A, with respect to which ϕ(x; y) witnesses the
tree property. Let a |= {ϕ(x; b0α) : α < ω + 1}. By Ramsey, compactness, and
automorphism, we may assume (b0α : α < ω + 1) is a Ba-indiscernible sequence.

Then we have a 6 |̂ d
A(b0α :α<ω)

b0ω_0 but b0ω_0 |̂ uA(b0α :α<ω)
a so a |̂ K

A
b0ω_0. �

{forkequalskimfork}
Corollary 7.4. The complete theory T is simple if and only if |̂ f = |̂ K over
models.
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Definition 7.5. [YC14, Definition 2.5] We say (ai)i∈κ is a universal Morley se-
quence in p ∈ S(A) if

• (ai)i∈κ is indiscernible with ai |= p
• If ϕ(x; y) ∈ L(A) and ϕ(x; a0) divides over A then {ϕ(x; ai) : i ∈ κ} is

inconsistent. {nomorley}
Proposition 7.6. Suppose T is NSOP1. Then T is simple if and only if, for any
M |= T and p(x) ∈ S(M), there is a universal Morley sequence in p.

Proof. If T is simple, then in any type p(y) ∈ S(M), there is a |̂ f -Morley sequence
in p(y). By Kim’s lemma for simple theories [Kim98, Proposition 2.1], this is a
universal Morley sequence in p.

If T is not simple, then there is some formula ϕ(x; b) ∈ L(Mb) which divides
over M but does not Kim-divide over M , by Corollary forkequalskimfork. Suppose
there is a universal Morley sequence in tp(b/M) - by compactness we can take it
to be (bi)i∈Q indexed by Q. Then given i ∈ Q, we have b<i is Mbi-indiscernible

so b<i |̂ dM bi so bi |̂ KM b<i by symmetry. So (bi)i∈Q is an |̂ K-Morley sequence.

By Lemma 6.5, {ϕ(x; bi) : i ∈ Q} is consistent. But ϕ(x; b) divides over M and
(bi)i∈Q is a universal Morley sequence so {ϕ(x; bi) : i ∈ Q} is inconsistent. This is
a contradiction. �

If a |̂ K
M
bb′, it does not always make sense to ask if a |̂ K

Mb
b′, since it is not

always the case that tp(b′/Mb) extends to a global Mb′-invariant type. This can

occur, however, whenever Mb′ is a model, for instance. Say |̂ K satisfies base

monotonicity when appropriate if, whenever a |̂ K
M
bb′ and tp(b′/Mb) extends to a

global M -invariant type, then a |̂ K
Mb

b′.

Proposition 7.7. The NSOP1 theory T is simple if and only if |̂ K satisfies base
monotonicity when appropriate.

Proof. It T is simple, this is a well-known property of non-forking independence. On

the other hand, suppose |̂ K satisfies base monotonicity when appropriate. We will

show that |̂ K = |̂ d over models. It follows then that T is simple, by Corollary

7.4. So suppose towards contradiction that a |̂ K
M
b but a |̂ d

M
b, witnessed by

ϕ(x; b) ∈ tp(a/Mb) and I = (bi)i<ω+1 is an M -indiscernible sequence with bω = b

and {ϕ(x; bi) : i < ω + 1} inconsistent. As a |̂ K
M
b, we may, by extension, assume

a |̂ K
M
I. Now tp(b/MI<ω) is finitely satisfiable in MI<ω by M -indiscernibility.

So, by base monotonicity when appropriate, we have a |̂ K
MI<ω

b. But stretching

I to (bi)i<ω+ω, we have that (bω+i)i<ω is a MI<ω-invariant Morley sequence (in
the reverse order) in tp(b/MI<ω) and {ϕ(x; bω+i) : i < ω} is inconsistent. So

a 6 |̂ K
MI<ω

b, a contradiction. �

8. Examples {examplesection}
8.1. Kim-Pillay. We are interested in explicitly describing |̂ K in concrete exam-
ples. As in simple theories, this is most easily acheived by establishing the existence
of an independence relation with certain properties and then deducing that, there-

fore, the relation coincides with |̂ K . The following theorem explains how this
works.
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{criterion}
Theorem 8.1. Assume there is an Aut(M)-invariant ternary relation |̂ on small
subsets of the monster M |= T such that it satisfies the following properties, for an
arbitrary M |= T and arbitrary tuples from M.

(1) Strong finite character: if a 6 |̂
M
b, then there is a formula ϕ(x, b,m) ∈

tp(a/bM) such that for any a′ |= ϕ(x, b,m), a′ 6 |̂
M
b.

(2) Existence over models: M |= T implies a |̂
M
M for any a.

(3) Monotonicity: aa′ |̂
M
bb′ =⇒ a |̂

M
b.

(4) Symmetry: a |̂
M
b ⇐⇒ b |̂

M
a.

(5) The independence theorem: a |̂
M
b, a′ |̂

M
c, b |̂

M
c and a ≡M a′ implies

there is a′′ with a′′ ≡Mb a, a′′ ≡Mc a
′ and a′′ |̂

M
bc

Then T is NSOP1 and |̂ strengthens |̂ K - i.e. if M |= T , a |̂
M
b then a |̂ K

M
b.

If, moreover, |̂ satisfies

(6) Witnessing: if a 6 |̂
M
b witnessed by ϕ(x; b) and (bi)i<ω is a global M -

invariant type extending tp(b/M), then {ϕ(x; bi) : i < ω} is inconsistent.

then |̂ = |̂ K .

Proof. It was shown in [CR16] that if there is such a relation |̂ , then T is NSOP1.

The proof there shows that if |̂ satisfies axioms (1)-(4), then a |̂ u
M
b implies

a |̂
M
b. Now suppose a |̂

M
b. Let p(x; b) = tp(a/Mb) and let q be a global coheir

of tp(b/M). By the independence theorem for |̂ ,
⋃
i<ω p(x; bi) is consistent. But

then a |̂ K
M
b. The “moreover” clause follows by definition of |̂ K . �

Remark 8.2. The condition (6) can be weakened to quantifying only over global
coheirs of tp(b/M) - this is sometimes slightly easier in practice.

Remark 8.3. Axioms (1)-(5) do not, by themselves, suffice to characterize |̂ K . See
Remark 8.34 below.

8.2. Combinatorial examples. In this section, we study some combinatorial ex-
amples of NSOP1 theories which are not simple. They are structures which encode
a generic family of selector functions for an equivalence relation. The theories de-
fined below provide a different presentation of the a theory defined by Džamonja
and Shelah in [DS04] (where it was called T ∗feq – though this name is now typically

reserved for a different theory) and later studied by Malliaris in [Mal12] (where it
was called T s). We give a family of theories T ∗n as n ranges over positive integers,
but we will only be interested in the case of n = 1, 2. Among non-simple NSOP1

theories, the theory T ∗1 is probably the easiest to understand, and we show that
already T ∗1 witnesses many of the new phenomena in our context: with respect to
this theory, we give explicit examples of formulas which divide but do not Kim-
divide, formulas which fork and do not divide over models, and types which contain
no universal Morley sequences.

We also use T ∗1 to answer a question of Chernikov from [Che14] concerning
simple and co-simple types. A type is simple if no instance of the tree property is
consistent with the type and a type is cosimple if the tree property cannot witnessed
using parameters which realize the type (see Definition 7.2 above for the precise
definition). For stability, no such distinction arises, but Chernikov was able to show
that, in general, there are co-simple types which are not simple. In fact, examples
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can be found in the triangle-free random graph. It was asked in [Che14] if there
can exist simple types which are not co-simple. We show the answer is yes already
within the class of NSOP1 theories.

Lastly, we use T ∗2 to give a counter-example to transitivity for |̂ K . Because
Kim-dividing does not behave well with respect to changing the base, the normal
formulation of transitivity doesn’t make necessarily sense. Nonetheless, there is a
natural way to formulate a version which does make sense. Suppose T is NSOP1,

M |= T and both a |̂ K
M
bc and b |̂ K

M
c. Must it also be the case, then, that

ab |̂ K
M
c? We show the answer is no.

For the remainder of this subsection, if A is a structure in some language and
X ⊆ A, write 〈X〉A for the substructure of A generated by X. We write just 〈X〉
when A is the monster model.

For a natural number n ≥ 1, let Ln = 〈O,F,E, eval〉 where O,F are sorts, E is
a binary relation symbol, and eval is an n+ 1-ary function. The theory Tn will say

• O and F are sorts - O and F disjoint and the universe is their union.
• E ⊆ O2 is an equivalence relation on O
• eval : Fn × O → O is a function so that for all f ∈ Fn, eval(f,−) is a

function from O to O which is a selector function for E – more formally,
for all b ∈ O, we have E(eval(f, b), b) and if b, b′ ∈ O and E(b, b′) then we
have

eval(f, b) = eval(f, b′).

The letter F is for ‘function’ and O is for ‘object’ - we think of an element f ∈ F
as naming the function eval(f,−). Let Kn be the class of finite models of T .

Lemma 8.4. The class Kn is a Fräıssé class. Moreover, it is uniformly locally
finite.

Proof. HP is clear as the axioms of Tn are universal and, as we allow the empty
structure, JEP will follow from SAP. So we show SAP. Suppose A,B,C ∈ Kn
where A ⊆ B,C and B ∩ C = A. It suffices to define a Ln-structure with domain
D = B ∪ C, extending both B and C. Interpret OD and FD by OD = OB ∪ OC
and FD = FB ∪ FC . Let ED be the equivalence relation generated by EB ∪ EC .
It follows that if b ∈ B, c ∈ C and (b, c) ∈ ED, then there is some a ∈ A so that
(a, b) ∈ EB and (a, c) ∈ EC and, moreover, (OD, ED) extends both (OB , EB) and
(OC , EC) as equivalence relations.

We are left with interpreting evalD. Let {ai : i < k0} enumerate a collection of
representatives for the EA-classes in A. Then let {bi : i < k1} and {ci : i < k2}
enumerate representatives for the EB- and EC-classes of elements not represented
by an element of A, respectively. Then every element of OD is equivalent to a
unique element of

X = {ai : i < k0} ∪ {bi : i < k1} ∪ {ci : i < k2}.

Suppose d ∈ X. If f ∈ (FB)n, define evalD(f, d) = evalB(f, d) if d ∈ B and

evalD(f, d) = d otherwise. Likewise, if f ∈ (FC)n and d ∈ C, put evalD(f, d) =

evalC(f, c) if c ∈ C and evalC(f, c) = c otherwise. If f ∈ (FD)n \ ((FB)n ∪ (FC)n),

put evalD(f, d) = d. This defines eval on (FD)n×X. More generally, if f ∈ (FD)n

and e ∈ OD, define evalD(f, e) = evalD(f, d) for the unique d ∈ X equivalent to e.
This is well-defined as B and C agree on A and the D so-defined is clearly in Kn.
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Finally, note that a structure in Kn generated by k elements is obtained by ap-
plying ≤ kn functions of the form eval(f,−) to ≤ k elements in O, so has cardinality
≤ kn+1. This shows Kn is uniformly locally finite. �

It follows that there is a complete ℵ0-categorical theory T ∗n extending Tn whose
models have age Kn. By the uniform local finiteness of Kn, T ∗n has quantifier-
elimination so T ∗n is the model completion of Tn. Let Mn |= T ∗n be a monster
model.

Definition 8.5. Define a ternary relation |̂ ∗ on small subsets of Mn by: a |̂ ∗
C
b

if and only if

(1) dcl(aC)/E ∩ dcl(bC)/E ⊆ dcl(C)/E
(2) dcl(aC) ∩ dcl(bC) ⊆ dcl(C).

where X/E = {[x]E : x ∈ X} denotes the collection of E-classes represented by an
element of X.

Remark 8.6. Note that by SAP, acl = dcl in T ∗n . From this, it is easy to check that
|̂ ∗ is just algebraic independence in (T ∗n)eq.

{independencetheoremfor2functions}
Lemma 8.7. The relation |̂ ∗ satisfies the independence theorem over models:

if M |= T ∗, a ≡M a′, a |̂ ∗
M
B, a′ |̂ ∗

M
C and B |̂ ∗

M
C then there is a′′ with

a′′ ≡MB a, a′′ ≡MC a′, and a′′ |̂ ∗
M
BC.

Proof. We may assumeM ⊆ B,C and that B and C are definably closed. Write a =
(d0, . . . , dk−1, e0, . . . , el−1) with di ∈ F and ej ∈ O and likewise a′ = (d′0, . . . , d

′
k−1, e

′
0, . . . , e

′
l−1).

By uniform local finiteness, we may also assume that a is closed under the functions
of L. Fix an automorphism σ ∈ Aut(Mn/M) with σ(a) = a′. Let U = {uf : f ∈
dcl(aB) \ B} and V = {vf : f ∈ dcl(a′C) \ C} denote collection of new formal
elements with uh = vσ(h) for all h ∈ 〈aM〉 \B. Let, then, a∗ be defined by

a∗ = (ud0 , . . . , udk−1
, ue0 , . . . , uel−1

) = (vd′0 , . . . , vd′k−1
, ve′0 , . . . , ve′l−1

).

We will construct by hand an L-structure D extending 〈BC〉 with domain UV 〈BC〉
in which a∗ ≡B a, a∗ ≡C a′ and a∗ |̂ ∗

M
BC.

There is a bijection ι0 : dcl(aB) → BU given by ι0(b) = b for all b ∈ B and
ι0(f) = uf for all f ∈ dcl(aB)\B. Likewise, we have a bijection ι1 : dcl(a′C)→ CV
given by ι1(c) = c for all c ∈ C and ι1(f) = vf for all f ∈ dcl(a′C) \ C. The union
of the images of these functions is the domain of the structure D to be constructed
and their intersection is ι0(〈aM〉) = ι1(〈a′M〉). Consider BU and CV as Ln-
structures by pushing forward the structure on dcl(aB) and dcl(a′C) along ι0 and
ι1, respectively. Note that ι0|〈aM〉 = (ι1 ◦ σ)|〈aM〉.

We are left to show that we can define an Ln-structure on UV 〈BC〉 extending
that on BU , CV , and 〈BC〉 in such a way as to obtain a model of T ∗n . To begin,
interpret the predicates by OD = OBU ∪ OCV ∪ O〈BC〉 and FD = FBU ∪ FCV ∪
F 〈BC〉. Let ED be defined to be the equivalence relation generated by EBU , ECV ,
and E〈BC〉. The interpretation of the predicates is well-defined since if f is an
element of ι0(〈aM〉) = ι1(〈a′M〉) then ι−1

0 (f) is in the predicate O if and only
if ι−1

1 (f) is as well, and, moreover, it is easy to check that our assumptions on
a, a′, B,C entail that no pair of inequivalent elements in BU , CV , or 〈BC〉 become
equivalent in D.

All that is left is to define the function evalD extending evalBU∪evalCV ∪eval〈BC〉.

We first claim that evalBU ∪evalCV ∪eval〈BC〉 is a function. The intersection of the
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domains of the first two functions is (in a Cartesian power of) ι0(〈aM〉) = ι1(〈aM〉).
If b, b′ are in this intersection, we must show

evalBU (b, b′) = c ⇐⇒ evalCV (b, b′) = c.

Choose b0, b
′
0, c0 ∈ 〈aM〉 and b1, b

′
1, c1 ∈ 〈a′M〉 with ιi(bi, b

′
i, ci) = (b, b′, c). Then

since ι0 = ι1 ◦ σ on 〈aM〉, we have

Mn |= eval(b0, b
′
0) = c0 ⇐⇒ Mn |= eval(σ(b0), σ(b′0)) = σ(c) ⇐⇒ Mn |= eval(b1, b

′
1) = c1.

Since evalBU and evalCV are defined by pushing forward the structure on 〈aB〉
and 〈a′C〉 along ι0 and ι1, respectively, this shows that evalBU ∪ evalCV defines a
function. Now the intersection of 〈BC〉 with ι0(〈aM〉M) is BC and, by construction,
all 3 functions agree on this set. So the union defines a function.

Choose a complete set of ED-class representatives {di : i < α} so that if di
represents an ED-class that meets M then di ∈ M . If e ∈ OD is ED-equivalent

to some e′ and (f, e′) is in the domain of evalBU ∪ evalCV ∪ eval〈BC〉
M

, define

evalD(f, e) to be the value that this function takes on on (f, e′). On the other
hand, if f ∈ (FD)n \ ((FBU )n ∪ (FCV )n ∪ (F 〈BC〉)n) or e is not ED-equivalent to

any element on which evalD(f,−) has already been defined, put evalD(f, e) = di
for the unique di E

D-equivalent to e. This now defines evalD on all of (FD)n×OD
and, by construction, evalD(f,−) is a selector function for ED for all f ∈ (FD)n.
This completes the construction of D and we’ve shown D is a model of T . By
model-completeness and saturation, D embeds into M over BC. If we can show
a∗ |̂ ∗M BC in D, then this will be true for the image of a∗ in D.

We have already argued that every ED class represented by an element of a∗ can
only be equivalent to an element of B or C if it is equivalent to an element of M .
Moreover, our construction has guaranteed 〈a∗M〉D ∩ 〈BC〉D ⊆ M , where 〈X〉D
denotes the substructure of D generated by X, so a∗ |̂ ∗M BC. �

{kimindependencefor2functions}
Proposition 8.8. The theory T ∗n is NSOP1 and, moreover, if M |= T ∗n , then

a |̂ ∗
M
b if and only if a |̂ K

M
b.

Proof. In Lemma 8.7, we showed |̂ ∗ satisfies the independence theorem over a

model, and the other conditions (1)-(4) in Theorem 8.1 are clear for |̂ ∗. To show

(6), notice that if A 6 |̂ ∗
M
B with A,B definably closed and containing M , then

either there is some a ∈ A and b ∈ B so that |= E(a, b) and the E-class of b does
not meet M or a = b for some b 6∈M . Then if (bi)i<ω is a Morley sequence in some
global M -invariant q ⊇ tp(b/M), then both {E(x; bi) : i < ω} or {x = bi : i < ω}
are 2-inconsistent. It follows that |̂ ∗ = |̂ K over models. �

{notcosimple}
Lemma 8.9. Modulo T ∗1 , the formula O(x) axiomatizes a complete type over ∅
which is not co-simple.

Proof. That O(x) implies a complete type is clear from quantifier-elimination. In
O(M1), choose an array (aα,β)α,β<ω of distinct elements so that, for all α < α′ < ω,
given β, β′, M1 |= E(aα,β , aα,β′) and M |= ¬E(aα,β , aα′,β′). Let ϕ(x; y) be the
formula eval(x, y) = y. It is now easy to check

• For all functions f : ω → ω, {ϕ(x; aα,f(α)) : α < ω} is consistent
• For all α < ω, {ϕ(x; aα,β) : β < ω} is 2-inconsistent,
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so ϕ(x; y) witnesses TP2 with respect to parameters realizing O(x). This shows
O(x) is not co-simple. �

Lemma 8.10. Suppose A ⊆M1. Then acl(A) = dcl(A) = A∪ eval(F (A)×O(A)).

Proof. The equality of acl(A) and dcl(A) follows from SAP for K1. The axioms of
T ∗1 imply that every term of L1 is equivalent to one of the form x or eval(x, y), so
dcl(A) = A ∪ eval(F (A)×O(A)). �

We will see that |̂ ∗ characterizes dividing when elements on the left-hand side
come from O. The following lemma is the key ingredient in proving this:

{dividing}
Lemma 8.11. Suppose A ∈ K1 and A = 〈a,B〉A for some a ∈ O(A) and B ∈ K1,
where l(a) = 1. Given a sequence (Bi)i<N of structures isomorphic to B over C
where for i 6= j, Bi ∩Bj = C. Then provided (1) is true, then (2) holds as well:

(1) a satisfies the following:
(a) A |= a 6= b for all b ∈ B \ C.
(b) A |= ¬E(a, b) for all b ∈ B not E-equivalent in A to an element of C.

(2) There is a structure D ∈ K1 and some a′ ∈ D so that
(a) 〈(Bi)i<N 〉 ⊆ D.
(b) 〈a′, Bi〉D ∼=C 〈a,B〉A for all i < N .

Proof. Suppose A = 〈a,B〉A, (Bi)i<N and C are given as in statement, satisfying
(1). If a ∈ C, the lemma follows from AP in K1 so assume it’s not, and therefore
a 6∈ B by our assumption that A |= a 6= b for all b ∈ B \ C. Moreover, we may
assume B0 = B. Note that the underlying set of A is B ∪ {a} ∪ eval(F (B), a). Let
X = 〈(Bi)i<N 〉

Case 1: A |= E(a, c) for some c ∈ C. In this case, the underlying set of A is
B ∪ {a} ∪ eval(F (B), c) = B ∪ {a}. Let D be the extension of X with underlying
set X ∪{a} with relations interpreted so that D |= a ∈ O∧E(a, c) and the function

eval defined to extend evalX and so that evalD(d, a) = evalX(d, c) for all d ∈ OD.
It is easy to check that this satisfies (2).

Case 2: A |= ¬E(a, c) for all c ∈ C. By our assumption that A satisfies (1),
it follows that A |= ¬E(a, b) for all b ∈ B and hence the underlying set of A is

the disjoint union of B and {a} ∪ evalA(F (B), a). Let Y = {a} ∪ evalA(F (B), a).
We will define an L1-structure extending X with underlying set X ∪ Y . Interpret
the sorts FD = FX and OD = OX ∪ Y . Define the equivalence relation so that
EX ⊂ ED and Y forms one ED-class.

Fix for all i < N a C-isomorphism σi : Bi → B0 (assume σ0 = idB0
). Note

that FX =
⋃
i<N F

Bi . Interpret evalD to extend evalX and so that, if b ∈ FBi and
e ∈ Y ,

evalD(b, e) = evalA(σi(b), a).

This defines D ∈ K1 and, by construction, the map extending σi and sending a 7→ a
induces an isomorphism 〈a,Bi〉D → 〈a,B0〉D = A for all i < N . This completes
the proof. �

{dividingmore}
Corollary 8.12. If a ∈ O(M1) and l(a) = 1, then a |̂ d

E
B if and only if a |̂ ∗

E
B.

Proof. If a 6 |̂ ∗
E
B then clearly a 6 |̂ d

E
B, so we prove the other direction. Suppose

a |̂ ∗
E
B and a 6 |̂ d

E
B and we will get a contradiction. Suppose ϕ(x; c, b) witnesses
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dividing, so ϕ(x; c, b) ∈ tp(a/EB) with c ∈ E and b ∈ B, and there is a E-
indiscernible sequence 〈bi : i < ω〉 with b0 = b so that {ϕ(x; c, bi) : i < ω} is k-
inconsistent for some k. Let C = 〈c〉M, Bi = 〈c, bi〉M and A = 〈a, b, c〉M. As a |̂ ∗

C
B,

the structures A, C, and (Bi)i<k+1 satisfy (1) of Lemma 8.11, and therefore there
is D ∈ K1 and some a′ ∈ D so that 〈(Bi)i<k+1 ⊆ D and 〈a′, Bi〉D ∼= 〈a,B〉A for all
i < k+1. By embedding D into M over 〈(Bi)i<k+1〉D we see that, in M, {ϕ(x; c, bi) :
i < k + 1} is consistent by quantifier-elimination. This is a contradiction. �

{artemQ}
Corollary 8.13. The theory T ∗1 is NSOP1 and the formula O(x) axiomatizes a
complete type which is simple and not cosimple.

Proof. Lemma 8.9 shows that O(x) axiomatizes complete type which is not cosim-

ple. To show O(x) is simple, we have to show that |̂ d satisfies local character on
O(x). So fix any a ∈ M1 with M1 |= O(a) and any small set B ⊆ M1. We may
suppose B = dcl(B). Notice that dcl(a) = a. If a ∈ B then a |̂ ∗

a
B. If a 6∈ B

but M |= E(a, b) for some b ∈ B then a |̂ ∗
b
B. Finally, if a not E-equivalent to

any element of B then a |̂ ∗∅B. Lemma ?? showed a |̂ ∗
C
B if and only if a |̂ d

C
B

for any a with M |= O(a), so |̂ d satisfies local character on O. Therefore O is
simple. �

Remark 8.14. This answers Problem 6.10 of [Che14].

Remark 8.15. Given a model M |= T ∗1 , one can consider the complete type p(x)
over M axiomatized by saying

• O(x)
• ¬E(x,m) for all m ∈ O(M)
• eval(x,m) 6= m for all m ∈ O(M)

In a similar fashion, one can check that this is simple, non-cosimple so, in particular,
nothing is gained by working over a model. In fact, in this situation, we get a direct
proof of the corollary, using Proposition 7.3, as we’ve shown that if a |= p, then

a |̂ d
M
b if and only if a |̂ K

M
b so p is simple.

Proposition 7.6 above shows that in any non-simple NSOP1 theory, there are
types over models with no universal Morley sequences in them. The following gives
an explicit example:

{nouniversal}
Proposition 8.16. Given M |= T , there is a type p ∈ S(M) with no universal
Morley sequence.

Proof. Pick b ∈ O(M) not in M and let p(x) = tp(b/M). Towards contradiction,
suppose (bi)i<ω is a universal Morley sequence in p.

Case 1: M |= E(bi, bi) for all i, j < ω.
The formula E(x; b) divides over M : choose any M -indiscernible sequence 〈ci :

i < ω〉 with c0 = b and ¬E(ci, ci+1) – then {E(x; ci) : i < ω} is inconsistent. But
{E(x; bi) : i < ω} is consistent, a contradiction.

Case 2: M |= ¬E(bi, bj) for i 6= j. The formula px(b) = b divides over M –
chose any M -indiscernible sequence 〈ci : i < ω〉 with E(ci, cj) for all i, j and c0 = b.
Then {px(ci) = ci : i < ω} is inconsistent (as for any a, the function pa takes on
only one value on elements of any equivalence class). But {px(bi) = bi : i < ω} is
consistent, a contradiction. �
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Proposition 8.17. In T , forking does not equal dividing, even over models.

Proof. Fix M |= T . Let ϕ(x, y; z) be the formula px(z) = z ∨ E(y, z). Given any
b ∈ O(M) not in M , we claim the formula ϕ(x, y; b) forks but does not divide
over M . The proof of Proposition 8.16 shows that both E(x, b) and px(b) = b
divide over M so ϕ(x, y; b) forks over M . Given any M -indiscernible sequence
〈bi : i < ω〉 starting with b, either all bi’s lie in a single equivalence class, in which
case {E(y, bi) : i < ω} is consistent, or they all lie in different classes, in which case
{px(bi) = bi : i < ω} is consistent. Either way, {ϕ(x, y; bi) : i < ω} is consistent, so
ϕ(x, y; b) does not divide over M . �

The following problem was suggested by Artem Chernikov:

Question 8.18. In an NSOP1 theory, does forking = dividing over models for
complete types? That is, if T is NSOP1, M |= T , and p(x) ∈ S(M) then must it
be the case that p(x) forks if and only if p(x) divides?

We note that graph-theoretic examples of theories for which forking and dividing
are different, but coincide for complete types have been studied by Conant [Con14].

Finally, the following proposition gives a counter-example to the form of transi-
tivity mentioned at the beginning of the subsection.

Proposition 8.19. For any model M |= T ∗, there are f, g, and c so that f |̂ K
M
gc,

g |̂ K
M
c, and fg 6 |̂ K

M
c.

Proof. Given M |= T , choose any c ∈M\M in an E-class represented by an element
m of M - let {mi : i < α} enumerate a set of representatives for the remaining
E-classes of M . Then choose distinct elements f, g ∈ F so that

(1) eval(f, g,m) = eval(g, f) = c.
(2) eval(f, h,m) = eval(h, f,m) = m and

eval(f, h,mi) = eval(h, f,mi) = mi

for all h ∈ FM ∪ {f}.
(3) eval(g, h,m) = eval(h, g,m) = m and

eval(g, h,mi) = eval(h, g,mi) = mi

for all h ∈ FM ∪ {g}.
Then we have

dcl(fM) = M ∪ {f}
dcl(gM) = M ∪ {g}
dcl(cM) = M ∪ {c}

dcl(fgM) = M ∪ {f, g, c}
dcl(gcM) = M ∪ {g, c}.

It follows that dcl(fM) ∩ dcl(gcM) and dcl(gM) ∩ dcl(cM) are contained in M so
f |̂ ∗

M
gc and g |̂ ∗

M
c. However, c ∈ (dcl(fgM)∩dcl(cM))\M , showing fg 6 |̂ ∗

M
c.
�
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8.3. Frobenius Fields.

Definition 8.20. Suppose F is a field.

(1) We say F is pseudo-algebraically closed (PAC) if every absolutely irreducible
variety over F has an F -rational point.

(2) We say F is a Frobenius field if F is PAC and its absolute Galois group
G(F ) has the embedding property, that is, if α : G(F )→ A and β : B → A
are continuous epimorphisms and B is a finite quotient of G(F ), then there
is a continuous epimorphism γ : G(F ) → B so that β ◦ γ = α as in the
following diagram:

G(F )

}}}} ����
B // // A

The free profinite group on countably many generators F̂ω has the embedding
property so the ω-free PAC fields are Frobenius fields. However, there are many
others - see, e.g., [FJ08, 24.6].

Definition 8.21. Suppose G is a profinite group. Let N (G) be the collection of
open normal subgroups of G. We define

S(G) =
∐

N∈N (G)

G/N.

Let LG the language with a sort Xn for each n ∈ Z+, two binary relation symbols
≤, C, and a ternary relation P . We regard S(G) as an LG-structure in the following
way:

• The coset gN is in sort Xn if and only if [G : N ] ≤ n.
• gN ≤ hM if and only if N ⊆M
• C(gN, hM) ⇐⇒ N ⊆M and gM = hM .
• P (g1N1, g2N2, g3N3) ⇐⇒ N1 = N2 = N3 and g1g2N1 = g3N1.

Note that we do not require that the sorts be disjoint.

Fact 8.22. Given a field F , we write G(F ) for its absolute Galois group. Suppose
K and L are fields which are both regular extensions of the field E. Then if K ≡E L
then S(G(K)) ≡S(G(E)) S(G(L)).

{kimimpliesweak1}
Proposition 8.23. Suppose T is an NSOP1 complete theory extending the theory of

fields and F |= T . Assume a |̂ K
F
b. Then the fields A = acl(Fa) and B = acl(Fb)

satisfy the following conditions:

(1) A and B are linearly disjoint over F
(2) F ∗ is a separable extension of AB
(3) acl(AB) ∩AsBs = AB.

Proof. In [Cha99, Theorem 3.5], Chatizdakis proves (1)-(3) for an arbitrary theory

of fields under the assumption that a |̂ f
F
b. She deduces from a |̂ f

F
b that there

is an F -indiscernible heir sequence (Bi)i<ω, i.e. an F -indiscernible sequence with
B<i |̂ uF Bi for all i, so that ABi ≡F AB for all i. She then proves that (1)-(3)
follow from the existence of such a sequence. Note, however, that if T is NSOP1,

this follows merely from the assumption a |̂ K
M
b since an heir sequence (Bi)i<ω
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is necessarily an |̂ K-Morley sequence (enumerated in reverse) so, if p(x;B) =
tp(A/B), then

⋃
i<ω p(x;Bi) is consistent, by Lemma [?]. Let A′ be a realization.

Moving the sequence by an automorphism, we may assume that A′ = A and B0 =
B. �

Remark 8.24. Note (1) and (2) are equivalent to saying A |̂ SCF
F

B.
{kimimpliesweak2}

Lemma 8.25. Suppose F is a Frobenius field. If A = acl(A), B = acl(B) contain

F and A |̂ K
M
B then S(G(A)) |̂ fS(G(F ))

S(G(B)) in Th(S(G(F ))).

Proof. Chatzidakis [C+98] shows that the Galois group S(G(F )) is ω-stable. Let
(Bi)i<ω be a Morley sequence in a global type finitely satisfiable in F extend-

ing tp(B/F ). As A |̂ K
M
B, we may assume (Bi)i<ω is A-indiscernible. Then

(S(G(Bi)))i<ω is a Morley sequence in a global type finitely satisfiable in S(G(F ))

which is moreover S(G(A))-indiscernible. This implies S(G(A)) |̂ KS(G(F ))
S(G(B)).

As Th(S(G(F )) is simple, this implies S(G(A)) |̂ fS(G(F ))
S(G(B)) by CITE. �

Fix a field F and let SCF denote the complete theory of which F s is a model.

Definition 8.26. Suppose A = acl(A), B = acl(B), and C = acl(C) in the field
F . We say A is weakly independent from B over C if

(1) A |̂ SCF

C
B

(2) S(G(A)) |̂ fS(G(F ))
S(G(B)), where |̂ f denotes non-forking independence

in Th(S(G(F)))

Extend this to arbitrary tuples by stipulating a is weakly independent from b over
c if and only if acl(a, c) is weakly independent from acl(b, c) over acl(c).

Theorem 8.27. [Cha02, Theorem 6.1] Let F be a Frobenius field, sufficiently sat-{zoeIT}
urated, and E = acl(E) a subfield of F . Assume, moreover, that acl(S(G(E))) =
S(G(E)) and if the degree of imperfection of F is finite, that E contains a p-basis
of F . Assume that the tuples a, b, c1, c2 of F satisfy:

(1) a and c1 are weakly independent over E, b and c2 are weakly independent
over E, c1 ≡E c2

(2) acl(Ea) and acl(Eb) are SCF-independent over E.

Then there is c realizing tp(acl(Ea)) ∪ tp(c2/acl(Eb)) such that c and acl(Eab) are
weakly independent over E.

Theorem 8.28. Suppose F is a Frobenius field and a, b are tuples from an elemen-

tary extension of F . Then a |̂ K
F
b if and only if a and b are weakly independent

over F .

Proof. First, we note that weak independence satisfies axioms (1)-(5) in Theorem
8.1. Non-forking independence always satisfies strong finite character, existence

over models, and monotonicity so (1)-(3) are satisfied for |̂ f in the theory of

separably closed fields and Th(S(G(F ))). As both of these theories are stable, |̂ f

is also symmetric. This shows (1)-(4). Condition (5) follows from Theorem [?].
By theorem 8.1, this shows that Th(F ) is NSOP1 and if a is weakly independent

from b over F , then a |̂ K
F
b. Conversely, if a |̂ K

F
b, then acl(aF ) |̂ SCF

F
acl(bF ) by

Proposition 8.23 and S(G(acl(aF ))) |̂ fS(G(F ))
S(G(acl(bF ))) by Lemma 8.25. This

shows a and b are weakly independent over F . �
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8.4. Vector spaces. The theory T∞ will denote the theory of infinite dimensional
vector spaces over an algebraically closed field equipped with a generic bilinear
form. The language is two-sorted: there is a sort V for the vector space, with the
language of abelian groups on it, a sort K for the field, equipped with the ring
language, a function K × V → V for the action of scalar multiplication, and a
function [, ] : V ×V → K for the bilinear form. We will use T∞ to refer to both the
theory where the form is symmetric and where it is alternating, as this choice makes
no difference for our analysis below. In this subsection, we will write M |= T∞ for
a fixed monster model of T∞.

Fact 8.29. Given a set X ⊆M, write XK for the field points of X and XV for the
vector space points of X. For Y a set of vectors, write 〈Y 〉 for the MK-span of V .

(1) T∞ eliminates quantifiers after expanding the vector space sort with an
n-ary predicate θn interpreted so that |= θn(v0, . . . , vn−1) if and only if
v0, . . . , vn−1 are linearly independent for all n ≥ 2.

(2) For any set A ⊆ M, the field points of dcl(A) are the field generated by
AK , {[a, b] : a, b ∈ AV }, and for each n, and every set {α0, . . . , αn−1}
such that there are v0, . . . , vn ∈ AV with M |= θn(v0, . . . , vn−1) and vn =
α0v0 + . . . + αn−1vn−1. Then the vector space points of dcl(A) are the
(dcl(A))K-span of AV . The field points of acl(A) are the algebraic closure
of (dcl(A))K and the vector space points of acl(A) are the (acl(A))K-span
of AV .

Definition 8.30. Suppose A ⊆ B and c is a singleton. Let c |̂ Γ

A
B be the assertion

that (dcl(cA))K |̂ ACF(dcl(A))K
(dcl(B))K and one of the following holds:

(1) c ∈MK

(2) c ∈ 〈A〉
(3) c 6∈ 〈B〉 and [c,B] is Φ-independent over A,

where ‘[c,B] is Φ-independent over A’ means that whenever {b0, . . . , bn−1} is a
linearly independent set in BV ∩ (MV \ 〈A〉) then the set {[c, b0], . . . , [c, bn−1]} is
algebraically independent over the compositum of (dcl(B))K and (dcl(Ac))K .

By induction, for c = (c0, . . . , cm) define c |̂ Γ

A
B by

c
Γ

|̂
A

B ⇐⇒ (c0, . . . , cm−1)
Γ

|̂
A

B and cm
Γ

|̂
Ac0...cm−1

Bc0 . . . cm−1.

Fact 8.31. [Gra99, Theorem 12.2.2] [CR16] The relation |̂ Γ
is automorphism

invariant, symmetric, and transitive. Moreover, it satisfies extension, strong finite
character, and stationarity over a model. Consequently, T∞ is NSOP1.

{kimchar}
Proposition 8.32. Suppose M |= T∞. Then if A = acl(A), B = acl(B) and

A ∩B ⊇M , then A |̂ K
M
B if and only if A ∩B = M .

Proof. Suppose M is a model, A = acl(A), B = acl(B), and A ∩ B ⊆ M . Let
C = acl(AB) and let (Ci)i<ω be an M -invariant Morley sequence over M with
C0 = C. Fix σ ∈ Aut(M/M) with σ(Ci) = Ci+1 for all i < ω. By restricting the
sequence (Ci)i<ω to a subtuple, we obtain an M -invariant Morley sequence (Bi)i<ω
with B0 = B. Let D = acl((Bi)i<ω). Let K̃ = (acl((Ci)i<ω))K . Let {ui : i < α}
be a basis for MV . Let {vi : i < β} complete this set to a basis for AV and let
(w0,j)j<γ complete it to a basis for (B0)V , then let (wi,j)j<γ be the set of vectors
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completing {ui : i < α} to a basis for (Bi)V corresponding to the (w0,j)j<β - i.e.
wi,j = σi(w0,j). By our assumptions, {ui : i < α} ∪ {vi : i < β} ∪ {wi,j : i < ω, j <

γ} is a set of linearly independent vectors in MV . Let Ṽ be the K̃-vector space
with basis {ui : i < α} ∪ {vi : i < β} ∪ {wi,j : i < ω, j < γ}. To define the model

N = (Ṽ , K̃), we are left with definining the form on Ṽ - for this it suffices to define
the form on a basis. First, interpret the form so that N extends the structure on
D - i.e.

[ui, ui′ ]
N = k ⇐⇒ [ui, ui′ ]

D = k

[ui, wi′,j ]
N = k ⇐⇒ [ui, wi′,j ]

D = k

[wi,j , wi′,j′ ]
N = k ⇐⇒ [wi,j , wi′,j′ ]

D = k.

And likewise, interpret the structure so that it extends the structure on A - i.e.

[ui, vi′ ]
N = k ⇐⇒ [ui, vi′ ]

A = k.

Then finally, we interpret the form so that the structure generated by ABi does
not depend on i: put [vi, w0,j ]

N = k ⇐⇒ [vi, w0,j ]
C = k and set

[vi, wi′,j ]
N =

{
k if [vi, w0,j ]

C = k ∈ A
σi
′
(k) if [vi, w0,j ]

C = k 6∈ A
This defines N . By quantifier-elimination, there is an embedding ι : N → M over
D into M. Let A′ = ι(A). By quantifier-elimination, we have AB0 ≡M A′Bi for all
i. This shows tp(A/B) does not Kim-divide over M . �

Proposition 8.33. Suppose M |= T∞. Then

(1) a |̂ Γ

M
b =⇒ a |̂ K

M
b.

(2) If a and b are singletons and a |̂ K
M
b ⇐⇒ a |̂ Γ

M
b.

(3) There are a and b so that a |̂ K
M
b and a 6 |̂ Γ

M
b.

Proof. (1) Suppose a |̂ Γ

M
b. By transitivity of |̂ ACF

, (dcl(aM))K |̂ ACF

MK
(dcl(bM))K

so

acl(aM)K
ACF

|̂
M

(acl(bM))K

since the field points of the algebraic closure of any set X are just the field-theoretic
algebraic closure of (dcl(X))K . Similarly, transitivity of independence for vector
spaces forces 〈(aM)V 〉 ∩ 〈(bM)V 〉 ⊆ 〈M〉. This shows acl(aM) ∩ acl(bM) ⊆ M so

a |̂ K
M
b. by Proposition 8.32.

(2) By (1), it suffices to show a |̂ K
M
b =⇒ a |̂ Γ

M
b. As a |̂ K

M
b, we know

acl(aM)K ∩ acl(bM)K ⊆MK so, in particular,

acl(aM)K
ACF

|̂
MK

acl(bM)K .

Likewise, acl(aM)V ∩ acl(bM)V ⊆ MV so 〈(aM)V 〉 ∩ 〈(bM)V 〉 ⊆ 〈MV 〉. If a and

b are singletons, then condition (3) in the definition of |̂ Γ
is trivially satisfied, so

a |̂ Γ

M
b.

(3) Given any M |= T∞, choose two vectors b1, b2 ∈ MV that are MK-linearly
independent over M . By model-completeness, we can find some vector a so that

acl(aM)∩acl(b1b2M) ⊆M , so a |̂ K
M
b1b2, and also [a, b1] = [a, b2]. Then we clearly
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have {[a, b1], [a, b2]} algebraically dependent, as they are equal, hence a 6 |̂ Γ

M
b1b2.
�

{notequal}
Remark 8.34. This observation implies that axioms (1)-(5) in Theorem 8.1 do not

suffice to characterize |̂ K , since |̂ Γ
satisfies these axioms and |̂ Γ 6= |̂ K .
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